首页> 外文会议>Unified International Technical Conference on Refractories;Biennial Worldwide Congress on Refractories >THERMOMECHANICAL BEHAVIOR OF HIGH-ALUMINA REFRACTORY CASTABLES CONTAINING PARTIALLY STABILIZED ZIRCONIA WITH DIFFERENT GRAIN SHAPES
【24h】

THERMOMECHANICAL BEHAVIOR OF HIGH-ALUMINA REFRACTORY CASTABLES CONTAINING PARTIALLY STABILIZED ZIRCONIA WITH DIFFERENT GRAIN SHAPES

机译:含有不同晶粒形状的含有部分稳定的氧化锆的高氧化铝耐火材料的热机械行为

获取原文

摘要

In many industrial processes refractory materials are exposed to considerable mechanical stresses at high temperatures. The wear resistance of refractories against these conditions is crucial to the service life of industrial aggregates. Therefore, an increased flexibility at elevated temperatures constitutes a desirable properties for refractory materials. The formation of interlocking structures contributing to this behavior can be found in nature;;for instance itacolumite, a material based on interlocked quartz grains exhibiting large intergranular decohesions. This particular microstructure, reminding of a puzzle, enables itacolumite to resist large strains before failure when exposed to thermomechanical stresses. Inspired by this very special material behavior, this study attempts to create refractory castables which are capable of resisting higher thermal shock stresses and show an improved flexibility. As a first step of this study, two chemically identical high-alumina castables were designed, which differ in the shape of the added Y-PSZ (Partially Stabilized Zirconia doped with 3 mol.-% yttria;;size 0.2 - 1 mm) grains only: The first formulation mainly includes anisometric Y-PSZ particles, whereas the second formulation predominantly contains isometric Y-PSZ grains of the same production lot. Thereby, two different methods of material reinforcement, namely transformation toughening and the formation of interlocking structures, are intended. To evaluate their impact on the high temperature performance of the castables, the applied testing methods include Resonant Frequency Damping Analysis up to 1500 °C as well as Refractoriness under Load (RuL) and Creep in Compression (CiC), Hot Modulus of Rupture (HMOR) tests between room temperature and 1500 °C and a post mortem SEM analysis of the microstructure.
机译:在许多工业过程中,耐火材料在高温下暴露于相当大的机械应力。耐火材料对这些条件的耐磨性对工业骨料的使用寿命至关重要。因此,升高温度的柔韧性增加构成耐火材料的理想性质。可以在自然界中发现有助于这种行为的互锁结构的形成;例如itacolumite,一种基于互锁的石英粒的材料表现出大型晶间脱粘。这种特殊的微观结构提醒难题使伊曲酮可以在暴露于热机械应力之前在发生故障之前抵抗大菌株。灵感来自这种非常特殊的材料行为,本研究试图创造能够抵抗更高的热冲击应力并显示出改善的柔韧性的耐火浇铸物。作为本研究的第一步,设计了两个化学上相同的高氧化铝粒状,其形状不同于添加的Y-PSZ(部分稳定的氧化锆,掺杂3mol .-%ytTria;尺寸0.2-1mm)颗粒仅限:第一种配方主要包括辐射y-PSZ颗粒,而第二种配方主要含有相同生产批次的等距Y-PSZ颗粒。由此,预期采用两种不同的材料增强方法,即转换增韧和互锁结构的形成。为了评估它们对铸件的高温性能的影响,所施加的测试方法包括谐振频率阻尼分析,可达1500°C以及负载(RUL)和蠕变中的耐火性(CIC),热量破裂模量(HMOR )在室温和1500°C之间进行测试,以及微观结构的后验验SEM分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号