【24h】

The Response of Micro-scale Devices Subject to High-g Impact Stimuli

机译:微尺度器件受到高G碰撞刺激的响应

获取原文
获取外文期刊封面目录资料

摘要

Recent advances in MEMS fabrication technology have resulted in a proliferation of microscale mechanical devices, some of which are applied in environments with severe levels of shock. The objective of this paper is to investigate the use of experimental and simulation methods in quantifying the behaviour of representative MEMS devices subject to high-g impact stimuli. Representative micro-cantilevers were analyzed under vibration and shock in order to determine the mechanical properties of single crystal silicon. The characteristic dimensions of the beams were of 100μm in height/width with beam lengths ranging from 5-7 mm. Controlled vibration and shock tests were carried out on a modified Hopkinson pressure bar and a vibration table. The experimental approach allowed non-invasive in-situ monitoring of the micro-cantilevers upon impact through Laser Doppler Vibrometry (LDV) and high-speed imaging (HSI). An investigation of the shock response of representative micro-cantilever beams indicates that orientation plays a significant role in their sensitivity to shock due to the planarity of the fabrication technique. Finite element analysis in conjunction with in-situ HSI proved to be a viable non-invasive inverse technique to determine the loci and amplitude of tensile stress within generic micro-scale devices.
机译:MEMS制造技术的最新进展导致微观机械装置的增殖,其中一些在具有严重休克水平的环境中应用。本文的目的是研究使用实验性和模拟方法的使用量化经受高G碰撞刺激的代表性MEMS装置的行为。在振动和休克下分析代表性的微悬臂,以确定单晶硅的机械性能。梁的特征尺寸在高度/宽度中为100μm,光束长度范围为5-7mm。在改进的Hopkinson压力杆和振动表上进行受控振动和冲击试验。实验方法允许通过激光多普勒振动器(LDV)和高速成像(HSI)撞击时对微悬臂器的非侵入式原位监测。对代表性微悬臂梁的冲击响应的研究表明,由于制造技术的平面性,取向在其对冲击的敏感性中起着重要作用。有限元分析与原位HSI一起被证明是一种可行的非侵入性反向技术,用于确定通用微尺度装置内拉伸应力的基因座和幅度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号