首页> 外文会议>IIR Conference on Caloric Cooling;Institut International Du Froid;Center for Environmental Energy Engineering >Numerical investigation of an active elastocaloric regenerator refrigerator with enhanced heat transfer structures
【24h】

Numerical investigation of an active elastocaloric regenerator refrigerator with enhanced heat transfer structures

机译:具有增强传热结构的活性弹性陶动器冰箱的数值研究

获取原文

摘要

Elastocaloric cooling exhibits extraordinary potential as an alternative cooling technology due to itsenvironmentally friendly nature. Previous studies have achieved highly efficient elastocaloric cooling byapplying compression or tension to Nickel Titanium alloy (Ni-Ti) and adopting active regeneration withwater as a heat transfer fluid (HTF) (Qian et al., 2016; Tušek et al., 2016). An active elastocaloricregenerator was developed in which cyclic tension loading was applied to bundles of Ni-Ti thin platesthat facilitated convective heat transfer (Tušek et al., 2016). However, insufficient structural fatiguelimits its application for long-term operation (Tušek et al., 2018). To improve the fatigue life,compression is identified as a promising alternative, and yet the integration of thermally efficientstructures with compressive loading mode is challenging due to material and structural instability. Theupgrading of the heat transfer component and its adequate coupling with the elastocaloric materials arerequired to achieve high cooling performance of compressive loaded elastocaloric cycles.The performance of an elastocaloric system is normally presented by specific cooling power (SCP).Numerical modelling of the elastocaloric system serves as a powerful tool to predict the thermodynamicefficiency and evaluate the system design. The state-of-the-art numerical models are based on relativelysimple structures, for instance, single or a bundle of tubes (Qian et al., 2017; Tušek et al., 2015). Here wepresent a quasi-1D model for an active elastocaloric regenerator system with efficient heat transfercomponents, aiming to achieve higher SCP without compromising the fatigue life of the elastocaloricmaterials in compressive loading cycles.As illustrated in Figure 1, a Ni-Ti tube is supported by mechanical structures inside the tube to avoidbuckling. The latent heat of the Ni-Ti tube is transferred by the structures surrounding the tube, whichinclude cupper enclosure and fluid passages. The fatigue of the design is not affected since the wholeheat transfer enhancement structure remains stress-free. In our simulations, we examined severaldesigns of fluid passages, e.g., porous medium, mini-channels, or thin film fins. With the heat transferarea extended by these structures, we expect that heat transfer by convection can be largely enhanced.The model is applicable for investigating the performance of different heat transfer enhancementstructures at various operating conditions including frequency, properties of heat transfer fluid, andtemperature difference, etc., as shown in Figure 2. The results demonstrate that these novel structuresare effective designs for enhancing the heat transfer efficiency and improving SCP of refrigerators. Thenewly developed model may provide us a useful tool to optimize and develop compressive elastocaloricrefrigerators.
机译:由于其替代的冷却技术,弹性陶瓷冷却表现出非凡的潜力环保性质。以前的研究已经实现了高效的弹性冷却将压缩或张力施加到镍钛合金(Ni-Ti)并采用活性再生水作为传热液(HTF)(Qian等人,2016;Tušek等,2016)。一个活跃的弹性焦开发了再生器,其中将环状张力载荷施加到Ni-Ti薄板的束上促进了对流传热(Tušek等,2016)。但是,结构疲劳不足限制其在长期操作中的应用(Tušek等,2018)。提高疲劳生活,压缩被确定为有前途的替代方案,但却的整合的热效率具有压缩负载模式的结构由于材料和结构不稳定性而挑战。这升级传热组分及其与弹性致大气材料的充分耦合需要实现压缩负载弹性循环的高冷却性能。弹性静脉系统的性能通常通过特定的冷却功率(SCP)呈现。弹性体系的数值建模用作预测热力学的强大工具效率并评估系统设计。最先进的数字模型基于相对的数字模型简单的结构,例如单身或一束管(Qian等人,2017;Tušek等,2015)。在这里,我们提出了一种具有有效热传递的主动弹性致大气压器系统的准1D模型组件,旨在在不影响弹性蜂鸣的疲劳寿命的情况下实现更高的SCP压缩载荷循环中的材料。如图1所示,通过管内的机械结构支撑Ni-Ti管以避免屈曲。 Ni-Ti管的潜热由管围绕管的结构转移包括带挡板和液体通道。设计的疲劳不受整体影响传热增强结构仍然无应力。在我们的模拟中,我们检查了几个流体通道的设计,例如多孔介质,迷你通道或薄膜鳍片。随着传热这些结构延伸的区域,我们预计通过对流的热传递可以大大提高。该模型适用于调查不同传热增强的性能在各种操作条件下的结构,包括频率,传热流体的性质,以及温度差等,如图2所示。结果表明这些新颖的结构是增强传热效率和改善冰箱SCP的有效设计。这新开发的模型可以为我们提供一种优化和开发压缩弹性的工具冰箱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号