首页> 外文会议>IIR Conference on Caloric Cooling;Institut International Du Froid;Center for Environmental Energy Engineering >Reduction of transient refrigeration time by modulation of fluid displacement ratio and operating frequency of a magnetocaloric device
【24h】

Reduction of transient refrigeration time by modulation of fluid displacement ratio and operating frequency of a magnetocaloric device

机译:通过调制磁热器件的流体位移比和工作频率来减少瞬态制冷时间

获取原文

摘要

In the literature, there are a lot of one-dimensional magnetic refrigeration model developed using lessormore well adapted exchange coefficients. In order to reduce assumptions and approximations, a globaltwodimensional(2-D) multiphysics model has been developed for an AMRR magnetocaloric device. Itintegrates successively:- a magnetostatic model based on a semi-analytical modeling of the magnetostatic phenomena, whichtakesinto account the nonlinear behaviour of the ferromagnetic external circuit as well as the activemagnetocaloric material (MCM) properties. The analytical model calculates the values of the internalmagnetic field and the internal magnetic flux density at each point of the regenerator volume;- a magnetocaloric model for calculating the magnetic power density produced in the magnetocaloricmaterial as a result of the magnetic field variation (provided by the magnetostatic model), combinedwiththe interpolation of the local magnetization of the magnetocaloric material (from experimental data) asafunction of local magnetic field and temperature values;- a thermo-fluidic model, which solves the energy and momentum equations using an implicit finitedifference method. It also calculates the heat capacity and the thermal conductivity of themagnetocaloricmaterial as a function of temperature and internal magnetic field, allowing to update the newtemperaturesof both the fluid and the material.The capacities and performances of the 2-D multiphysics model (Plait et al. (2021)) are studied by theinfluence of input parameters on the temperature difference and the time necessary to obtain thesteady state in adiabatic mode. The first study consists in calculating the influence of the two mainoperating parameters – the fluid displacement ratio A0 and the AMR frequency f – in order to obtain themaximal temperature difference between the two ends of the regenerator. The fluid displacement ratioranges from 5 % to 100 % of the channel volume for every specific operating frequency between 0.1 Hzand 1 Hz. The first figure shows the maximal temperature mapping obtained at steady state and permitsto observe a maximal span temperature of 16 K, with a combination {A0, f} = {25 %, 0.3 Hz}. However,some other combinations permit to obtain a similar temperature difference (in equipotential zonescombining whether lower A0 with higher f or combination of higher A0 with lower f). This kind of studywas realized in the literature (Bahl et al. (2008), Almanza et al. (2015)), which permits to validate thisstudy. Thus, it is interesting to identify which combination permits to reduce the time necessary toobtain these results.For that, the second study consists in calculating the transient temperature between the start and thestationary regime, allowing to determine the best combination {A0, f}, which ensures the fastest cooling rate. The second figure shows the mapping of the time necessary to achieve the steady state. A highfrequency combined to a high fluid displacement ratio permits to reduce the time necessary to obtainthesteady state. In our configuration the best combination to obtain the maximal temperature difference inaminimal time is {20 %, 0.5 Hz}.
机译:在文献中,有很多使用较少的一维磁制冷模型或者更适合的交换系数。为了减少假设和近似,全局TwoDimensional.(2-D)为AMRR磁热器件开发了多体学型。它连续整合: - 一种基于磁化现象的半分析建模的静磁模型需要考虑到铁磁外部电路的非线性行为以及活动的非线性行为磁热材料(MCM)性质。分析模型计算内部的值磁场和再生容积每个点处的内部磁通密度; - 用于计算磁热量产生的磁功率密度的磁热模型由于磁场变化(由磁静压模型提供)的材料,组合和磁热材料的局部磁化的插值(从实验数据)如一种局部磁场和温度值的功能; - 一种热流体模型,其使用隐式有限性解决能量和动量方程差异方法。它还计算了热量和导热率磁整体材料作为温度和内部磁场的函数,允许更新新的温度流体和材料。由2-D多体型模型的能力和性能(Plait等)研究了输入参数对获得的温差和获得时间所需的影响绝热模式下稳态。第一项研究包括计算两种主要的影响操作参数 - 流体位移比A0和AMR频率f - 以获得再生器两端之间的最大温差。流体位移比每个特定工作频率的频道音量的5%到100%范围为0.1 Hz和1赫兹。第一个图显示了在稳态和允许处获得的最大温度映射要观察到16 k的最大脉冲温度,其中组合{A0,F} = {25%,0.3Hz}。然而,其他一些组合允许获得类似的温差(在等电位区域中组合是否具有较高F的下A0或具有较低A0的较高A0的组合。这类学习在文献中实现了(Bahl等人。(2008),Almanza等人。(2015)),许可证验证这一点学习。因此,识别哪些组合允许减少所需时间的允许获得这些结果。为此,第二项研究包括计算开始与瞬态温度和静止的方案,允许确定最佳组合{A0,F},这确保了最快的冷却速率。第二图显示了实现稳定状态所需的时间的映射。高频率组合到高流体位移比允许减少获得所需的时间这稳定状态。在我们配置中,最佳组合可以获得最大温差一种最小时间是{20%,0.5 Hz}。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号