首页> 外文会议>IIR Conference on Caloric Cooling;Institut International Du Froid;Center for Environmental Energy Engineering >Machine-learning assisted search for magnetocaloric materials: Discovery of gigantic magnetocaloric effect in HoB_2
【24h】

Machine-learning assisted search for magnetocaloric materials: Discovery of gigantic magnetocaloric effect in HoB_2

机译:机器学习辅助搜索磁热理材料:在HOB_2中发现巨大的磁热效应

获取原文

摘要

The magnetocaloric effect (MCE), often characterized by the magnetic entropy change (SM) for a givenapplied field change (H), is one of the most promising alternative paths for the development ofgreenhouse-gas free refrigeration devices (Franco et al., 2018). The magnitude of SM tends to peak at amaterial`s magnetic ordering temperature (Tmag), such as Curie (TC) or Néel (TN) temperature, and itsmaximum value for a H strongly depends on the material. Since the discovery of gigantic MCE inmaterials such as Gd5Si2Ge2 (Pecharsky and Gschneidner, 1997) and La(Fe,Si)13 (Shen et al., 2009) anexplosive increase in the search for materials which could exhibit such effect lead to the accumulation ofmagnetocaloric properties of a vast number of magnetic materials. However, it remains a challenge todesign materials that can exhibit such a remarkable effect. To tackle this challenge, we constructed amachine learning model for predicting SMMAX purely based on chemical composition descriptors. Forthis, we gathered the accumulated data of magnetocaloric materials, and trained a model for theprediction of SMMAX for a given material composition and an applied H. Then, by exploring a textmineddatabase called MagneticMaterials (Court and Cole, 2018) the obtained model was used inconjunction with domain expertise to filter possible candidates for experimental verification. Throughthis approach, we found HoB2 (TC = 15 K), exhibits that highest volumetric SM of 0.35 J cm-3 K-1 for H= 5 T (Castro et al., 2020), to the best of our knowledge, of all known characterized second-ordermagnetic phase transition materials in the temperature range between 4.2 and 77 K, as shown in thefigure below.In this talk, we will discuss the process of model building, the choice of compositional based features,the current challenges and will briefly introduce and compare the experimental results with othermaterials in the same temperature range.
机译:磁热效应(MCE),通常是给定的磁熵变化(SM)的特征应用领域改变(h)是最有前途开发的替代路径之一温室气体免费制冷装置(Franco等,2018)。 SM的大小倾向于达到a材料磁性有序温度(TMAG),如居里(TC)或Néel(TN)温度及其H H的最大值强烈取决于材料。自发现巨大的MCEGd5si2ge2(Pecharsky和Gschneidner,1997)和La(Fe,Si)13(Shen等,2009)的材料爆炸性增加寻找可能表现出这样的效果的材料导致积累大量磁性材料的磁热性能。但是,它仍然是一个挑战设计材料可以表现出如此显着效果。为了解决这一挑战,我们建造了一个基于化学成分描述符纯粹预测SMMAX的机器学习模型。为了这,我们收集了磁热材料的累积数据,并培训了模型对给定材料组成和应用H的Smmax预测。然后,通过探索课程数据库称为乘法物质(法院和COLE,2018)所获得的模型用于与域专业知识结合以过滤可能的候选人进行实验验证。通过这种方法,我们发现HOB2(TC = 15 k),表现出0.35J厘米-3k-1的最高体积SM= 5 T(Castro等,2020),据我们所知,所有已知的特征二阶磁相过渡材料在4.2和77k之间的温度范围内,如图所示图下图。在这次谈话中,我们将讨论模型建筑的过程,选择基于组成的功能,目前的挑战并将简要介绍并与其他实验结果比较材料在相同温度范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号