【24h】

Fourier Feature Approximations for Periodic Kernels in Time-Series Modelling

机译:定期内核中的傅里叶特征近似值

获取原文
获取外文期刊封面目录资料

摘要

Gaussian Processes (GPs) provide an extremely powerful mechanism to model a variety of problems but incur an O(N~3) complexity in the number of data samples. Common approximation methods rely on what are often termed inducing points but still typically incur an O(NM~2) complexity in the data and corresponding inducing points. Using Random Fourier Feature (RFF) maps, we overcome this by transforming the problem into a Bayesian Linear Regression formulation upon which we apply a Bayesian Variational treatment that also allows learning the corresponding kernel hyperpa-rameters, likelihood and noise parameters. In this paper we introduce an alternative method using Fourier series to obtain spectral representations of common kernels, in particular for periodic warpings, which surprisingly have a convergent, non-random form using special functions, requiring fewer spectral features to approximate their corresponding kernel to high accuracy. Using this, we can fuse the Random Fourier Feature spectral representations of common kernels with their periodic counterparts to show how they can more effectively and expressively learn patterns in time-series for both interpolation and extrapolation. This method combines robustness, scalability and equally importantly, interpretability through a symbolic declarative grammar that is both functionally and humanly intuitive - a property that is crucial for explainable decision making. Using probabilistic programming and Variational Inference we are able to efficiently optimise over these rich functional representations. We show significantly improved Gram matrix approximation errors, and also demonstrate the method in several time-series problems comparing other commonly used approaches such as recurrent neural networks.
机译:高斯进程(GPS)提供了一种极其强大的机制来模拟各种问题,但在数据样本的数量中产生o(n〜3)复杂性。常见近似方法依赖于通常被称为诱导点,但仍然通常在数据和相应的诱导点中产生o(nm〜2)复杂度。使用随机傅里叶特征(RFF)地图,我们通过将问题转换为贝叶斯线性回归制剂来克服这一点,我们应用了贝叶斯变分疗,该处理还允许学习相应的内核Hyperpa-rameters,可能性和噪声参数。在本文中,我们介绍了一种使用傅里叶串的替代方法,以获得常见核的光谱表示,特别是对于周期性的扭曲,令人惊讶地具有使用特殊功能的收敛,非随机形式,需要更少的光谱功能来将它们的相应内核近似于高度准确性。使用此,我们可以融合常见内核的随机傅里叶特征谱表示,其周期性对应物将它们如何在用于插值和外推的时间序列中更有效地学习模式。该方法结合了稳健性,可扩展性和同样重要的是,通过功能性和人类直观的符号声明语法来解释性,这是一种对可解释决策的重要性至关重要的属性。使用概率编程和变分推论我们能够有效地优化这些丰富的功能表示。我们显着提高了克矩阵近似误差,并且还在几个时间序列问题中展示了比较诸如经常性神经网络的其他常用方法的若干时间序列问题的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号