首页> 外文会议>Global Congress on Process Safety;American Institute of Chemical Engineers Meeting >Analysis of a Complex Protection Scheme with Component Sharing Between Protection Layers
【24h】

Analysis of a Complex Protection Scheme with Component Sharing Between Protection Layers

机译:保护层组件共享复杂保护方案分析

获取原文

摘要

After many years of implementation of a LOPA/SIS [1] work process, many scenarios and protection schemes were found to be difficult to properly evaluate with simple analysis tools. These complex systems have been proven designs but had not been evaluated with a LOPA/SIS work process, or a similar work process. The challenge of shared components, longer test intervals and complex protection layer design led to using better modeling techniques and tools to close risk gaps and also often reduce overall protection scheme cost. This work process can be used for any scenarios that are difficult to close and/or for alternative risk assessment for LOPA and for HIPS(S) or QRA scenarios. This paper uses an example of a batch reactor system and a continuous reactor system with BPCS and SIS and component data to discuss the issues with shared instrumentation, complex protection scheme design and test interval optimization for meeting required safety criteria with low on-going maintenance costs. Starting with a LOPA that identifies shared components, a logic model is developed including shared components and common cause failures. This scenario and protection scheme is evaluated using fault tree software with the capability to correctly model shared components, beta factors, IEC 61508 averaging and functional and proof testing of the components. Isograph’s Reliability Workbench (RWB) 13.0.2 software is used to evaluate the meta-function (BPCS loop and SIS loop that have some shared components). The impacts of functional testing for the final elements and voting logic on the inputs, and beta factors for common cause are evaluated and discussed. The PFD of the SIS and meta-function are calculated as are the false trip rate for the SIS Loop, BPCS loop, and meta-function. The beta factors are calculated per IEC [2] guidelines with the M out of N beta factor corrections. An illustration of the RWB IEC 61508 FT model, and use of the IEC 61508 EXT averaging is shown. Results show the options available for test intervals to meet the PFD targets and false trip targets.
机译:经过多年的LoPA / SIS [1]工作过程,发现许多情况和保护计划很难通过简单的分析工具进行适当评估。这些复杂的系统已被证明设计,但尚未通过LoPA / SIS工作流程或类似的工作过程进行评估。共享组件的挑战,较长的测试间隔和复杂的保护层设计导致使用更好的建模技术和工具来关​​闭风险差距,并且还经常降低整体保护方案成本。该工作过程可用于任何难以关闭和/或为LOPA和HIPS或QRA情景进行替代风险评估的方案。本文使用批量反应器系统和具有BPC和SIS和组件数据的连续电抗器系统的示例,讨论共享仪器的问题,复杂的保护方案设计和测试间隔优化,以满足需要低维护成本的所需安全标准。从识别共享组件的LOPA开始,开发了一个逻辑模型,包括共享组件和常见的原因失败。使用故障树软件评估此方案和保护方案,具有正确模拟共享组件的功能,β因子,IEC 61508对组件的平均和功能和证明测试。 Isograph的可靠性工作台(RWB)13.0.2软件用于评估元函数(BPCS循环和具有一些共享组件的SIS循环)。对最终元素和投票逻辑的功能测试对输入的影响以及常见原因的β因子进行了影响。 SIS和META函数的PFD计算为SIS循环,BPC循环和元函数的假跳闸速率。 β因子通过IEC [2]指南计算N个β因子校正。 RWB IEC 61508 FT模型的图示以及IEC 61508 EXT平均的使用。结果显示可用于测试间隔的选项,以满足PFD目标和假跳闸目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号