首页> 外文会议>Forum on New Materials;International Ceramics Congress >Development of high surface area titania on glass fibre supports for photocatalysis
【24h】

Development of high surface area titania on glass fibre supports for photocatalysis

机译:光催化玻璃纤维支撑高表面积二氧化钛的研制

获取原文

摘要

We show that we have developed a hydrothermal process that produces a high surface area TiO2 on glass fibre supports. The as produced titania shows good photocatalytic activity against a standard commercial dye - Rhodamine B- giving full decolourisation within 3 hours under UV and visible light irradiation. The samples are mechanically robust and can act as a photocatalytic filter for waste streams and pollutants. In addition to testing the standard titania we also photochemically deposit nanosfructures of Pd. These hybrid catalysts show enhanced decolourisation by an order of magnitude over the native titania systems. This enhanced performance is due to the increased energy harvesting of the hybrid system through a visible light plasmon interaction and the direct injection of electrons from the noble metal into the adsorbed dye molecules. There is a clear relationship between the absorbed light and photochemical reactivity of the system which is further explained in terms of electron hole generation and separation and plasmonic interaction. In summary, we have generated a high performance catalyst that is produced on a bulk commodity substrate with enhanced activity due to control of the surface plasmon and direct band gap transition of electron hole pairs in the semi-conductor.
机译:我们表明我们开发了一种在玻璃纤维支撑件上产生高表面积TiO2的水热过程。由于所生产的二氧化钛在UV和可见光照射下,对标准商业染料的标准商业染料 - Rhodamine B-提供了良好的光催化活性。样品是机械稳健的,可用作废物流和污染物的光催化过滤器。除了测试标准二氧化钛外,我们还提供了PD的化程沉积纳米污染物。这些杂化催化剂通过原生二氧化钛系统的数量级显示出增强的脱色。这种增强的性能是由于通过可见光的等离子相互作用和从贵金属的直接喷射到吸附的染料分子中的电气的能量收集增加的能量收集。在电子孔产生和分离和等离子体相互作用方面进一步解释的系统的吸收光和光化学反应性之间存在明显的关系。总之,我们已经产生了一种高性能催化剂,其在散装商品衬底上产生,其由于在半导体中的表面等离子体和电子空穴对的直接带隙过渡而导致的活性增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号