首页> 外文会议>International Conference on Pattern Recognition Workshops >Workshop on Metrification and Optimization of Input Image Quality in Deep Networks (MOI2QDN)
【24h】

Workshop on Metrification and Optimization of Input Image Quality in Deep Networks (MOI2QDN)

机译:深网络中输入图像质量的估算研讨会(MOI2QDN)

获取原文
获取外文期刊封面目录资料

摘要

Recent years have seen significant advances in image processing and computer vision applications based on Deep Neural Networks (DNNs). This is a critical technology for a number of real-time applications including autonomous vehicles, smart cities, and industrial computer vision. Often deep neural networks for such applications are trained and validated based on the assumption that the images are artefact-free. However, in most real-time embedded system applications the images input to the networks, in addition to any variations of external conditions, have artefacts introduced by the imaging process, such as the Image Signal Processing (ISP) pipelines. Data augmentation methods are exploited to expand the subset of trained images to include images with different levels of distortions. Such data augmentation often may result to improved performance of the network for artefact-specific images but also degrades the performance for artefact-free images.
机译:近年来,基于深神经网络(DNN)的图像处理和计算机视觉应用中有显着进展。 这是一项适用于许多实时应用的关键技术,包括自动车辆,智能城市和工业计算机视觉。 通常,基于图像是无瑕疵的假设,训练和验证了这种应用的深度神经网络。 然而,在大多数实时嵌入式系统应用中,除了外部条件的任何变体之外,还具有由成像过程引入的人工制品的图像,例如图像信号处理(ISP)管道。 利用数据增强方法以扩展培训的图像的子集,以包括具有不同扭曲级别的图像。 这种数据增强通常可能导致为人工制品图像提高网络的性能,而且还会降低无需图像的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号