首页> 外文会议>U.S. Rock Mechanics/Geomechanics Symposium >Simulation and Analysis of Laboratory Scale Hydraulic Fracturing Using 3D Virtual Multidimensional Internal Bonds Model with Fracture Energy Conservation
【24h】

Simulation and Analysis of Laboratory Scale Hydraulic Fracturing Using 3D Virtual Multidimensional Internal Bonds Model with Fracture Energy Conservation

机译:用3D虚拟多维内键模型与裂缝节能模型进行实验室规模液压压裂的仿真与分析

获取原文
获取外文期刊封面目录资料

摘要

Accurate prediction of softening and failure behavior of rocks are essential to hydraulic fracturing simulation using strain-softening type models. Failure to preserve the fracture energy causes these continuums based numerical models to suffer from mesh-size dependency. The virtual Multi-dimensional Internal Bond Model (VMIB) is derived from a particle-based constitutive law at the micro scale. It has been implemented in a 3D Finite Element Method in which material softening and energy dissipation occur over the “representative elementary volume”. However, in realistic materials, energy dissipation is due to fracture surfaces creation instead of material softening in the element. In this work we present an improved VMIB model to bridge the energy dissipation over the representative elementary volume and the fracture surfaces using a virtual bond potential that incorporates the material fracture energy to eliminate the mesh-size sensitivity. The virtual bond potential considers both the critical fracture energy and element size. The 3D model is calibrated and verified by carrying out simulations of a group of three-point-bend tests using different mesh sizes. Then, by incorporating a three-dimensional element partition method, the model is applied to a series of laboratory scale hydraulic fracturing experiments. Furthermore, multiple hydraulic fracturing from closely-staged clusters is simulated. It is found that the model can accurately capture the fractures growth pattern that is influenced by the stress boundary conditions and the stress shadow interaction among the fractures. The results also show the predicted breakdown pressure reasonably agree with the experiment data.
机译:使用应变软化型模型,岩石的软化和失效行为的精确预测对于液压压裂模拟至关重要。未能保持裂缝能量会导致这些基于连续的数值模型遭受网格尺寸依赖性。虚拟多维内键模型(VMIB)源自微尺度的基于粒子的本构律。它已经以3D有限元方法实现,其中材料软化和能量耗散发生在“代表基本体积”上。然而,在现实的材料中,能量耗散是由于骨折表面产生而不是元素中的材料软化。在这项工作中,我们介绍了一种改进的VMIB模型,用于使用掺入材料骨折能量的虚拟粘合电位来弥合代表基本体积和断裂表面的能量耗散,以消除网状尺寸灵敏度。虚拟债券潜力考虑了临界断裂能量和元素尺寸。通过使用不同网格尺寸进行一组三点弯曲测试的模拟来校准和验证3D模型。然后,通过掺入三维元件分区方法,该模型应用于一系列实验室规模的水力压裂实验。此外,模拟了来自紧密分阶段簇的多种液压压裂。结果发现,该模型可以准确地捕获受压力边界条件影响的裂缝生长模式和裂缝之间的应力暗影相互作用。结果还显示了预测的击穿压力与实验数据合理达成一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号