【24h】

Transfer Learning with Joint Optimization for Label-Efficient Medical Image Anomaly Detection

机译:与标签高效医学图像异常检测的联合优化转移学习

获取原文
获取外文期刊封面目录资料

摘要

Many medical imaging applications require robust capabilities for automated image anomaly detection. Supervised deep learning approaches can be employed for such tasks, but poses large data collection and annotation burdens. To address this challenge, recent works have proposed advanced unsupervised, semi-supervised or transfer learning based deep learning methods for label-efficient image anomaly detection. However, these methods often require extensive hyperparameter tuning to achieve good performance, and have yet to be demonstrated in data-scarce domain centric applications with nuanced normal-vs-anomaly distinctions. Here, we propose a practical label-efficient anomaly detection method that employs fine-tuning of pre-trained model based on a small target domain dataset. Our approach employs a joint optimization framework to enhance discriminative power for anomaly detection performance. In evaluations on two benchmark medical image datasets, we demonstrate (a) strong performance gains over state-of-the-art baselines and (b) increased label efficiency over standard fine-tuning approaches. Importantly, our approach reduces the need for large annotated datasets, requires minimal hyperparameter tuning, and shows stronger performance boost for more challenging anomalies.
机译:许多医学成像应用需要自动图像异常检测鲁棒功能。监督深度学习方法可以用于此类任务,但造成大量数据收集和注释负担。为了解决这一挑战,最近的作品已经提出了基于先进的无监督,半监督或转移学习的基于Lable高效图像异常检测的深度学习方法。然而,这些方法通常需要广泛的超级参数调整以实现良好的性能,并且尚未在数据稀缺域以中心应用中进行展示,具有细微的正常与异常区别。在这里,我们提出了一种实用的标签高效异常检测方法,该方法采用基于小目标域数据集的预训练模型进行微调。我们的方法采用联合优化框架来增强对异常检测性能的鉴别力。在两台基准医学图像数据集的评估中,我们证明(a)通过最先进的基线和(b)增加了标准微调方法的标签效率的强劲性能。重要的是,我们的方法减少了对大型注释数据集的需求,需要最小的高参考调谐,并为更具挑战性的异常显示出更强的性能提升。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号