首页> 外文会议>International Conference on Advances in Materials and Manufacturing Engineering >Fused Deposition Modelling and Parametric Optimization of ABS-M30
【24h】

Fused Deposition Modelling and Parametric Optimization of ABS-M30

机译:ABS-M30的融合沉积建模与参数优化

获取原文

摘要

In the current development of generative manufacturing industries, 3D printing technologies have a significant impact in the production of complex geometry with least time and the absence of human intercession, tools, fixtures and dies. Presently in engineering application, fused deposition modelling (FDM) has better demand in additive manufacturing. The improvement in design quality and manufacturing in FDM is based on the proper selection of principal operational parameters. This paper experimentally describes the influence of stereotypical operational variables, i.e. layer thickness, raster angle, raster width, part build orientation and their reciprocation on the precision of change in length, width, thickness, hole diameter and angle orientation of test part of acrylonitrile butadiene styrene-M30 (ABS-M30) after generated by FDM approach. It was profound that shrinkage predominates along the diameter of hole but an increase in dimension of length, width, thickness and angle of inclination is more than the thirst value of the fabricated specimen. The most favourable parametric combination is followed to optimize the precise responses just as a change in length, width, thickness, hole diameter and angle orientation of build part by using a parametric design of Taguchi's L_9 orthogonal array. As Taguchi's methodology is not much satisfactory for steady optimal factor amalgamation of each response Grey-Taguchi methods used to investigate the influence of FDM parameters on multi-performance characteristics, combining all the responses into a single response. The correlative effect of significant factors is determined by Analysis of Variance (ANOVA). Finally, the ANOVA on Grey relational grade indicates layer thickness, part build orientation and raster width which are significant. Layer thickness is the most influencing factor for part build. The percentage errors are 12.05, 4.55, 2.45, 3.4, 5.07 and 0.74 for change in length, width, thickness, diameter, angle and Grey relational grade, respectively.
机译:在目前的发电厂制造业的发展中,3D印刷技术对生产复杂几何的产生重大影响,最短的时间和人类闭路,工具,夹具和死亡。目前在工程应用中,融合沉积建模(FDM)具有更好的添加剂制造需求。 FDM设计质量和制造的提高是基于主操作参数的正确选择。本文实验地描述了陈规定型操作变量,即层厚度,光栅角度,光栅宽度,部件构建方向及其对丙烯腈丁二烯的长度变化的精度,宽度,厚度,孔直径和角度取向的往复运动的影响由FDM方法产生后苯乙烯-M30(ABS-M30)。它深刻的是,沿着孔的直径收缩,但长度,宽度,厚度和倾斜角度的尺寸的增加大于制造标本的肢体。遵循最有利的参数组合以通过使用Taguchi的L_9正交阵列的参数设计,优化实际响应作为构建部分的长度,宽度,孔径​​和角度方向的变化。由于Taguchi的方法对用于研究FDM参数对多性能特性的影响,因此对每个响应的稳定最佳因子算法并不多令人满意,用于研究FDM参数对多性能特征的影响,将所有响应组合成单个响应。通过对方差分析(ANOVA)来确定重大因素的相关效果。最后,灰色关系等级上的ANOVA表示层厚度,部分构建方向和光栅宽度。层厚度是部分构建的影响因素。百分比误差分别为12.05,4.55,2.45,3.4,5.07和0.74,分别变化,宽度,厚度,直径,角度和灰色关系等级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号