首页> 外文会议>International Conference on Nanomaterials: Science, Engineering and Technology >Investigations on power requirements for industrial compression strategies for Carbon Capture and Sequestration
【24h】

Investigations on power requirements for industrial compression strategies for Carbon Capture and Sequestration

机译:对碳捕获和封存的工业压缩策略电力要求的调查

获取原文

摘要

The main purpose of this study is to identify the optimum multistage compression strategies for minimising the compression and intercooler power requirements for pure CO2 stream. An analytical model based on thermodynamics principles is developed and applied to determine the power requirements for various compression strategies for pure CO2 stream. The compression options examined include conventional multistage integrally geared centrifugal compressors (option A), supersonic shockwave compressors (option B) and multistage compression combined with subcritical (option C) and supercritical liquefaction (option D) and pumping. In the case of determining the power demand for inter-stage cooling and liquefaction, a thermodynamic model based on Carnot refrigeration cycle is applied. From the previous study by [1], the power demand for inter-stage cooling duty was assumed to have been neglected. However, based on the present study, the inter-stage cooling duty is predicted to be significantly higher and contributes approximately 30% of the total power requirement for compression options A, C and D, while reaches 58% when applied to option B. It is also found that compression option C can offer higher efficiency than other compression strategies, while supercritical liquefaction efficiency is only marginally higher than that in the compression option A.
机译:本研究的主要目的是识别最佳的多级压缩策略,以使纯二氧化碳流的压缩和中间冷却器电源要求最小化。开发并应用了基于热力学原理的分析模型,以确定纯二氧化碳流的各种压缩策略的电源要求。检查的压缩选项包括常规的多级多级整体齿轮离心压缩机(选件A),超声波冲击波压缩机(选件B)和多级压缩和多级压缩,与亚临界(选项C)和超临界液化(选件D)和泵送。在确定对级间冷却和液化的电力需求的情况下,施加了一种基于圆形制冷循环的热力学模型。从以前的研究通过[1],假设对阶段间冷却占冷却义的电力需求被忽略了。然而,基于本研究,预计阶段间的冷却占空比将显着提高,并为压缩选项A,C和D的总功率要求的大约增加约30%,而当应用于选件B时达到58%。它还发现压缩选项C可以提供比其他压缩策略更高的效率,而超临界液化效率仅比压缩选项A略微高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号