首页> 外文会议>International Conference on Physics and Applied Physics >Characterization of LaSrCoFeO_3 Cathode Material Prepared with the Aid of Functionalized Carbon Nanotubes for Proton Conducting Fuel Cell
【24h】

Characterization of LaSrCoFeO_3 Cathode Material Prepared with the Aid of Functionalized Carbon Nanotubes for Proton Conducting Fuel Cell

机译:用借助于官能化碳纳米管制备的LasrCOFeO_3阴极材料的表征,用于质子传导燃料电池

获取原文

摘要

A La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ) (LSCF) cathode material was synthesized via a modified sol-gel method using metal nitrate-salts assisted with four different weight ratios of functionalized carbon nanotubes (f-CNTs). As-prepared sample was undergo calcination process at 900°C for 5 hours and then characterized using X-ray diffractometer (XRD) and Brunauer-Emmet-Teller (BET). The LSCF powder prepared with the best weight ratio was mixed with binder to form a cathode slurry, and then coated on both side of the BaCe_(0.54)Zr_(0.36)Y_(0.1)O_(2.95) (BCZY) electrolyte pellet that served as a support. The fabricated cell was subjected to an electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM) for electrical and surface morphology studies. Clearly seen from the XRD patterns, all the samples exhibited single phase with orthorhombic structure (JCPDS-00-089-1268). However, the highest surface area was found for LSCF modified with 4 mg f-CNTs. For electrochemical study, the area specific resistance (ASR) of the half-cell was two times lower as compared to pristine-LSCF(ASR= 0.375 Ωcm~2 and 0.675 Ωcm~2). The SEM images clearly showed a good contact between the electrolyte and cathode after the EIS measurement with no sign of crack and delamination for the best sample. Thus, the additional of 4 mg f-CNTs as a dispersing agent in the sol-gel routes has successfully produced a good quality cathode that needed for high performance proton conducting fuel cell (PCFC).
机译:通过使用金属硝酸盐盐的改性溶胶方法合成La_(0.6)Sr_(0.2)Co_(0.2)Fe_(0.8)O_(3-Δ)(3-δ)(3-δ)(LSCF)阴极材料。辅助官能化的四种不同重量比碳纳米管(F-CNT)。如制备的样品在900℃下进行煅烧过程5小时,然后使用X射线衍射仪(XRD)和Brunauer-Emmet-Teller(Bet)表征。用最合适的重量比制备的LSCF粉末与粘合剂混合以形成阴极浆料,然后涂覆在所提供的Bace_(0.54)Zr_(0.36)Y_(0.1)O_(2.95)电解质颗粒的两侧作为支持。对制造的电池进行电化学阻抗光谱(EIS)和扫描电子显微镜(SEM),用于电气和表面形态学研究。从XRD图案清楚地看出,所有样品都显示出具有正交结构的单相(JCPDS-00-089-1268)。然而,发现最高表面积用于用4mg F-CNT修饰的LSCF。对于电化学研究,与原始-LSCF(ASR =0.375Ωcm〜2和0.675Ωcm〜2)相比,半电池的面积特异性抗性(ASR)为两倍。 SEM图像在EIS测量后,电解质和阴极之间清楚地显示出良好的接触,没有裂缝和最佳样品的迹象。因此,作为溶胶 - 凝胶丝中的分散剂的另外的4mg F-CNT已经成功地制造了高性能质子传导燃料电池(PCFC)所需的良好质量阴极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号