首页> 外文会议>Conference on Metrology, Inspection, and Process Control for Semiconductor Manufacturing >Multivariate analysis methodology for the study of massive multidimensional SEM data
【24h】

Multivariate analysis methodology for the study of massive multidimensional SEM data

机译:大规模多维SEM数据研究的多变量分析方法

获取原文

摘要

Over the years, the reduction in the size of semiconductor devices has made their performances extremely sensitive to small differences between printed structures and intended design. As a consequence, metrology equipment manufacturers are nowadays proposing new tool configurations, able to ensure quality control in such a challenging environment by generating massive multi-properties measurement sets from inspected wafers. However, the unprecedented amount of acquired measurements and their intrinsic diversity creates a new challenge in terms of data analysis. In this work, we propose an analysis method suitable for massive multi-descriptors data sets and apply it to the processing of measurements acquired on the GS1000, the latest generation e-beam metrology tool from Hitachi. This new approach is based on the Parallel Coordinates Plot (PCP). The PCP representation is very efficient to condensate multidimensional data into a single plot, but not adapted to large data sets due to over-plotting problems. To overcome these issues, we have developed specific strategies to enable PCP to be efficient on massive data analysis by both extracting neighbors' properties by median depiction and the multi-properties dispersion. The experimental validation has been carried out over 1.7 billion Contact Hole (CH) measurements acquired on a test wafer. 28 different properties have been quantified from the e-beam images for each pattern and grouped into 3 categories: size area, edge placement error, and gap. The analysis of the full data set with the proposed methodology clearly showed the FEM fingerprint and allowed us to determine the process window based on the multi-criteria analysis. By combining the PCP with an Artificial Neural Network (ANN) we were able to model accurately the stochastic cliffs defects' density.
机译:多年来,半导体器件尺寸的减小使其对印刷结构和预期设计之间的小差异非常敏感。因此,计量设备制造商现在提出了新的工具配置,能够通过从检查晶片的大量多特性测量集产生大规模的多特性测量集来确保在这种具有挑战性环境中的质量控制。然而,在数据分析方面,未预先预定的获得量和其内在多样性在数据分析方面创造了新的挑战。在这项工作中,我们提出了一种适用于大规模多描述符数据集的分析方法,并将其应用于从Hitachi的最新一代电子束计量工具在GS1000上获取的测量。这种新方法基于并行坐标绘图(PCP)。 PCP表示非常有效地将多维数据分成单个绘图,但由于过度绘图问题而不适应大数据集。为了克服这些问题,我们已经开发了特定的策略,使PCP能够通过中值描绘和多属性分散来提取邻居的属性来高效。实验验证已经在测试晶片上获得的超过1.7亿次接触孔(CH)测量。 28不同的属性已从每个模式的电子束图像中量化,并分组为3个类别:尺寸区域,边缘放置误差和间隙。使用该方法的完整数据集的分析清楚地显示了有限元指纹,并允许我们根据多标准分析来确定过程窗口。通过将PCP与人工神经网络(ANN)相结合,我们能够精确地模拟随机悬崖缺陷的密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号