首页> 外文会议>EVOLVE conference >Evidence-Based Multi-disciplinary Robust Optimization for Mars Microentry Probe Design
【24h】

Evidence-Based Multi-disciplinary Robust Optimization for Mars Microentry Probe Design

机译:基于证据的MARS微型探测设计的多学科鲁棒优化

获取原文

摘要

Atmospheric pressure on Mars is approximately 1 % of that on Earth and varies about 15 % during the year due to condensation and sublimation of its primarily CO_2 atmosphere. Impacts of the uncertainties during the entry are difficult to be modeled. The situation becomes more complex when uncertainties are from different disciplines. In this work, a robust multi-disciplinary optimization method for Mars microentry probe design under epistemic uncertainties is presented. Objectives of the evidence-based robust design are set to minimize the interior temperature of thermal protection systems (TPS) and maximize its belief value under uncertainties. A population-based multi-objective estimation of distribution algorithm (MOEDA) is designed for searching the robust Pareto set. Candidate solutions are adaptively clustered into groups. In each group, principal component analysis (PCA) technique is performed to estimate population distribution, sample and reproduce individuals. Non-dominated individuals are sorted and selected through the NSGA-II-like selection procedure. Adaptive sampling and binary branching techniques are employed for computing the evidence belief functions. PCA dimensionality reduction technique is implemented for identifying and removing uncertain boxes with little contribution of the beliefs. With variable fidelity model management, analytical aerodynamic model is used first to initialize the optimization searching direction. Artificial neural network (ANN) surrogate model is used for reducing the computational cost. When the optimization goes close to the optima, more data from the high accuracy model are put into the aerodynamic database, making the optimization procedure converge on optima quickly while keeping high-level accuracy.
机译:MARS的大气压约为地球的1%,由于其主要是CO_2大气的凝结和升华,这一年度差异约为15%。难以建模在进入过程中的不确定性的影响。当不确定性来自不同的学科时,情况变得更加复杂。在这项工作中,提出了一种稳健的多学科优化方法,用于在认知不确定因素下进行MARS微型探针设计。基于证据的鲁棒设计的目标设定为最小化热保护系统(TPS)的内部温度,并在不确定因素下最大化其信仰价值。专为搜索强大的Pareto集而设计的基于人口的多目标估计。候选解决方案适用于组。在每组中,进行主成分分析(PCA)技术以估计人口分布,样本和繁殖个体。通过NSGA-II类选择程序对非主导的个人进行排序和选择。采用自适应采样和二进制分支技术来计算证据信念功能。实施PCA维数减少技术,用于识别和消除不确定框架,贡献信仰的贡献。通过可变保真模型管理,首先使用分析空气动力学模型来初始化优化搜索方向。人工神经网络(ANN)代理模型用于降低计算成本。当优化靠近Optima时,从高精度模型的更多数据被放入空气动力学数据库中,使优化过程能够快速收敛于优化,同时保持高电平精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号