首页> 外文会议>IEEE Power Energy Society Innovative Smart Grid Technologies Conference >Temporal ensemble learning of univariate methods for short term load forecasting
【24h】

Temporal ensemble learning of univariate methods for short term load forecasting

机译:短期负荷预测的单变量方法的时间集合学习

获取原文

摘要

Short term load forecasting (STLF) is a fundamental component of demand response programs in smart grids. Recent literature has focused on complex neural networks and deep learning models for solving STLF. While these models work well for load forecasting with complex non-linear relationships, they have been shown to be less effective than simpler univariate models for STLF problems with under a 6 hours horizon. Given the lack of multivariate data (such as temperature) in many practical datasets, we need better univariate prediction models for STLF. By partitioning the dataset by temporal features, we develop a novel ensemble learning method that exploits daily seasonality in electricity consumption data to improve accuracy of popular univariate models. We train an ensemble of models from the dataset partitions. We develop a variety of methods, including Ridge Regression, to increase the robustness of the ensemble prediction. To show the effectiveness of our approach, we perform detailed evaluation using an aggregated user electricity consumption dataset collected by the Los Angeles Department of Water and Power (LADWP). We select four popular prediction algorithms in literature for our experiments, including Kernel Regression (KR), Support Vector Regression (SVR) and neural network approaches. We compare the performance of these algorithms applying our ensemble approach to training only one single model. Our approach leads to an 11.2% decrease in mean absolute percentage error (MAPE) and 21.3% decrease in root mean squared error (RMSE) over the single model approach for KR, and a 30% and 32.4% decrease in MAPE and RMSE respectively for SVR. These ensemble models also outperform the neural network approaches.
机译:短期负载预测(STLF)是智能电网需求响应计划的基本组成部分。最近的文献专注于复杂的神经网络和求解STLF的深层学习模型。虽然这些模型适用于具有复杂的非线性关系的负载预测,但它们已被证明比在6小时内的STLF问题的简单单变量模型效果更低。鉴于许多实用数据集中缺乏多元数据(如温度),我们需要更好的单变量预测模型的STLF。通过按时间特征划分数据集,我们开发了一种新的集合学习方法,该方法利用电力消耗数据的日常季节性,以提高流行的单变量模型的准确性。我们从数据集分区列出模型的集合。我们开发各种方法,包括岭回归,以增加集合预测的鲁棒性。为了展示我们方法的有效性,我们使用洛杉矶水和电力(LADWP)收集的聚合使用电力消耗数据集进行详细的评估。我们在文献中选择四个流行的预测算法,为我们的实验,包括内核回归(KR),支持向量回归(SVR)和神经网络方法。我们比较这些算法的性能,应用我们的集合方法只能训练一个单一模型。我们的方法导致平均绝对百分比误差(MAPE)的11.2 %降低,并且通过单一模型方法的根均方误差(RMSE)减少了21.3 %,而MAPE的30 %和32.4 %降低和RMSE分别用于SVR。这些集合模型也优于神经网络方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号