首页> 外文会议>Radio and Antenna Days of the Indian Ocean >The use of a Higher Order Basis in Computational Electromagnetics
【24h】

The use of a Higher Order Basis in Computational Electromagnetics

机译:在计算电磁学中使用更高阶基础

获取原文
获取外文期刊封面目录资料

摘要

The objective of this short course is to illustrate the basic principles of a higher order basis in computational electromagnetics. The basic principles will be illustrated through its application in the solution of integral equations and in finite elements. Basically use of a higher order basis not only provides the continuity of the current but also of the charge in an integral equation setting. This results in partial elimination of the breakdown at very low frequency. Also, the number of unknowns to approximate a given problem is dramatically reduced. In addition, the defect at an internal resonant frequency in the analysis of a closed body is highly localized without seriously affecting the solution and therefore one can use an EFIE formulation rather than a CFIE. Typically, for a higher order basis, only 10-20 unknowns per wavelength squared of surface area are needed, leading to a reduction of an order of the magnitude of the size of the impedance matrix that needs to be solved. Hence, problems using the subsectional basis that require a supercomputer to solve can easily be solved on a laptop computer. Also, electrically large problems can easily be handled using modest computer resources, whereas the same problems cannot be solved on large computers using the sub sectional basis because the matrix sizes will be extremely large! For example, if one wishes to analyze a metallic cube with each dimension of four times the wavelength, using 10 subsections per wavelength in a piecewise sub sectional basis will lead to a total of approximately 57,600 unknowns, whereas with the higher order basis, it will use approximately 2700 unknowns and the total solution time on a laptop PC will be less than a minute! When applying this methodology to the finite element method it will be seen that similar improvement is not only achieved in the computational procedures but also the rate of convergence is highly accelerated. Many other interesting and salient features of the higher order basis are also discussed in this presentation.
机译:本次课程的目的是说明计算电磁学中更高阶基础的基本原理。基本原理将通过其在整体方程的解决方案和有限元中的应用来说明。基本上使用更高阶基础,不仅提供了积分方程设置中的电流的连续性,而且提供了电荷。这导致在非常低频的频率下部分消除击穿。而且,大致减少了近似给定问题的未知数的数量。另外,在闭合体的分析中,内部谐振频率的缺陷高度本地化,而不会严重影响溶液,因此可以使用EFIE配方而不是CFIE。通常,对于更高阶的基础,需要仅需要每个波长平方的10-20个未知数,导致需要解决的阻抗矩阵尺寸的级别的减少。因此,使用需要超级计算机来解决的缩放基础的问题可以很容易地解决在便携式计算机上。此外,可以使用适度的计算机资源容易地处理电力大问题,而使用子部分的大型计算机不能解决同样的问题,因为矩阵尺寸将非常大!例如,如果希望将金属立方体分析到波长的每个尺寸的每个维度,则使用每个波长的10个分段子截面基础将导致总共约为57,600个未知数,而在较高的基础上,它将使用大约2700个未知数,笔记本电脑上的总解决时间少于一分钟!当将该方法应用于有限元方法时,可以看出,在计算过程中不仅可以实现类似的改进,而且会收敛速度高度加速。在本演示文稿中还讨论了许多更高阶的有趣和突出的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号