首页> 外文会议>EPS Conference on Plasma Physics >Application of the free-boundary SIESTA MHD equilibrium code to bootstrap control scenarios in the W7-X stellarator
【24h】

Application of the free-boundary SIESTA MHD equilibrium code to bootstrap control scenarios in the W7-X stellarator

机译:自由边界SIESTA MHD均衡代码在W7-X螺旋液中的引导控制方案中的应用

获取原文
获取外文期刊封面目录资料

摘要

SIESTA is a recently developed [1] MHD equilibrium code that has been designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. It is an iterative code that uses the solution previously obtained by the wellknown VMEC code [2] (for the same problem) to provide an Eulerian background coordinate system and an initial guess of the equilibrium solution, from which the iteration starts. Since VMEC assumes well-defined closed magnetic surfaces, the solution that VMEC provides provides a good, non-singular, polar-like generalized coordinate system. But in contrast to VMEC, SIESTA does not assume the existence of closed magnetic surfaces. Thus, the final equilibrium solution that SIESTA converges too may include other magnetic topologies such as magnetic islands and stochastic regions. Magnetic flux and mass conservation are the only constraints imposed on the solution. Numerically, SIESTA iterates through a series of plasma displacements £ while it looks for a minimum of the total MHD energy, given by: {formula} The minimum energy state (i.e., equilibrium) is obtained when the displacement satisfies F(ξ)= {formula}, where the ideal MHD force isF= J×B-▽p. The displacement required is obtained iteratively, by applying a Newton method and solving the associated linear problem by a combination of preconditioning and iterative algorithms such as GMRES, among others.
机译:午索是最近开发的[1] MHD均衡编码,旨在为三维磁性配置进行快速准确地计算理想的MHD均衡。它是一种迭代的代码,它使用了先前由众所周知的VMEC码[2](同一问题)获得的解决方案来提供eulerian背景坐标系和初始猜测衡量解的迭代开始。由于VMEC假设良好定义的闭合磁表面,因此VMEC提供的解决方案提供了良好的非奇异,极性的极性坐标系。但与VMEC相比,午睡不承担闭孔的存在。因此,午睡的最终平衡溶液也可以包括其他磁性拓扑,例如磁岛和随机区域。磁通量和质量保护是施加在解决方案上的唯一限制。在数值上,午睡通过一系列等离子体位移仪器迭代,而它看起来是最小的总MHD能量,给出:{式}当位移满足F(ξ)= {时获得最小能量状态(即,平衡)。公式},理想的MHD力ISF = J×B-▽P。通过应用牛顿方法并通过预处理和迭代算法(例如GMRES)的组合来解决所需的位移和解决相关的线性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号