首页> 外文会议>Basic Researches in the Tropical and Costal Region Eco Developments Conference >Carbon Biomass Algorithms Development for Mangrove Vegetation in Kemujan, Parang Island Karimunjawa National Park and Demak Coastal Area-Indonesia
【24h】

Carbon Biomass Algorithms Development for Mangrove Vegetation in Kemujan, Parang Island Karimunjawa National Park and Demak Coastal Area-Indonesia

机译:Kemujan,Parang Island Karimunjawa国家公园和Demak沿海地区的红树林植被碳生物量算法

获取原文

摘要

The increase and accumulation of greenhouse gases such as C02 was believed had caused global warming. Effort to decrease accumulation these gases is by increasing the role of mangrove forests with its ecological function as carbon sinks through good management system. To this date, very limited study on the mangrove carbon biomass using satellite data espescially in tropical region. Purpose of the research were to calculate the carbon biomass of mangrove vegetation above ground through allometric equations, and to build spatial model algorithms of each mangrove species in the region by remote sensing technology using Quickbird, Geo Eye and ALOS satellite data. The research use an exploratory field survey and purposive sampling method and was performed through the measurement of trunk diameter (DBH) of above ground mangrove biomass without damaging vegetation (non-destructive sampling). About 21 mangrove species in Kemujan Island with total mangrove biomass above ground consist of the trunk, branches, leaves : 182.4 ton or 91.2 tons of Carbon, with largest carbon storage in the trunk. The results of spatial algorithms mangrove carbon biomass for Kemujan island using Quickbird data are Ceriops tagal with Y=-0.003(B2/B3)2 + 0.267(B2/B3).-3.452;; Rhizophora apiculata with the algorithm Y= 0.001(B2/B3 f-0.116(B2/B3) + 3.415;; Bruguiera cylindrical with the algorithm Y=-0.003(B2/B3)2 + 0.336(B2/B3)-7.265;; Xyloearpus granatum with algorithm Y= 0.000(B2/B3)2-0.058(B2/B3) + 2.101;; Rhizophora mucronata with the algorithm Y= 0.000(B2/B3)2-0.022(B2/B3) + 1.941. Mangrove carbon biomass algorithm using Geo Eye satellite data at Parang island for Rhizophora mucronata Y =-0.0436(B2/B3)2+ 0.526 (B2/B3)-1.4642;; Bruguiera gymnorrhiza Y =-0.0027 (B2/B3)2 + 0.0649 (B2/B3)-0.2432 and Bruguiera cylindrical Y =-0.0089 (B2/B3)2 + 0.0632 (B2/B3)-0.0683. Total mangrove carbon biomass at Demak coastal area range from 2.9-44.74 ton. Algorithm of mangrove carbon biomass at Demak using ALOS-AVNIR satellite data for Avicennia marina was Y ==-79.18 ((B1-B2)/(B1+B2))2+ 31.35 ((B1-B2)/(B1+B2))-1.191. The research concluded that band rationing of Band-2 with Band-3 for Quickbird and GeoEye data and Band-1 with Band-2 for ALOS data as the spectral signature of mangrove chlorophyll pigment with wave length of 0.5-0.6 um as the best for mangrove carbon algorithms.
机译:温室气体,如二氧化碳的增加和积累被认为造成了全球变暖。努力降低积累这些气体是其生态功能通过良好的管理系统的碳汇增加红树林的作用。为了这一天,很对红树林生物量碳在热带地区使用卫星数据espescially有限的研究。研究的目的是,以计算上述通过异速生长公式地面红树植被的生物量的碳,并建立由遥感技术使用快鸟,地理位置眼和ALOS卫星数据区域中的每个红树物种的空间模型的算法。该研究使用的探索实地调查和立意取样方法和通过地上红树生物质的树干直径(DBH)的测量,而不会损坏植被(非破坏性采样)进行。在Kemujan岛约21种红树植物与红树林总生物量地上由树干,树枝,树叶的:182.4吨或91.2吨碳,在树干最大的碳储存。空间算法红树碳生物质为Kemujan岛使用快鸟数据的结果是果木与Y = -0.003(B2 / B3)2 + 0.267(B2 / B3).- 3.452 ;;红树与算法Y = 0.001(B2 / B3 F-0.116(B2 / B3)+ 3.415 ;;木圆筒与算法Y = -0.003(B2 / B3)2 + 0.336(B2 / B3)-7.265 ;; Xyloearpus石榴皮与算法Y = 0.000(B2 / B3)2-0.058(B2 / B3)+ 2.101 ;;红茄苳与算法Y = 0.000(B2 / B3)2-0.022(B2 / B3)+ 1.941。红树碳使用地理眼卫星数据在帕朗岛为红茄苳Y = -0.0436(B2 / B3)2+ 0.526(B2 / B3)-1.4642 ;;木榄Y = -0.0027(B2 / B3)2 + 0.0649(B2生物质算法/B3)-0.2432和木圆柱形Y = -0.0089(B2 / B3)2 + 0.0632(B2 / B3)在淡目沿海地区范围-0.0683总红树碳的生物质从2.9-44.74吨。在红树淡目碳生物质的算法为白骨壤使用ALOS-AVNIR卫星数据为Y == - 79.18((B1-B2)/(B1 + B2))2+ 31.35((B1-B2)/(B1 + B2)) - 1.191研究得出的结论该带2的带配给与带3为快鸟和的GeoEye数据和带1与带2 ALOS数据作为光谱特征的具有0.5-0.6微米波长的最佳为红树林碳算法红树叶绿素色素。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号