首页> 外文会议>Advanced Course on Multiscale Modeling of Complex Materials >Fractals and Randomness in Mechanics of Materials
【24h】

Fractals and Randomness in Mechanics of Materials

机译:材料力学中的分形和随机性

获取原文

摘要

These notes provide an introduction to two aspects of mechanics of materials: (i) effects of randomness on scaling to effective constitutive responses and (ii) fractal geometries. The first aspect is relevant when the separation of scales does not hold [i.e. when dominant (macroscopic) length scales are large relative to microscale ones]. Then, various concepts of continuum solid mechanics need to be re-examined and new methods developed. Thus, we focus on scaling from a Statistical Volume Element (SVE) to a Representative Volume Element (RVE). Using micromechanics, the RVE is approached in terms of two hierarchies of bounds stemming, respectively, from Dirichlet and Neumann boundary value problems set up on the SVE. While the linear conductive and elastic microstructures were treated in (Ostoja-Starzewski, 2001), here we review this scaling in (non)linear (thermo)elasticity, elasto-plasticity, and viscoelasticity. We also signal the new concept of a scaling function as well as touch on scale effects in stochastic damage mechanics. The above approach also allows one to ask the question: Why are fractal patterns observed in inelastic materials? This issue is addressed in the setting of microheterogeneous elastic-plastic materials, whose grain-level properties are weak noise-to-signal random fields lacking any spatial correlation structure. We find that, under monotonic loadings of Dirichlet or Neumann type, the RVE-level response involves plasticized grains forming fractal patterns and gradually filling the entire material domain. Simultaneously, the sharp kink in the stress-strain curve is replaced by a smooth transition. This is universally the case for a wide range of different elastic-plastic materials of metal or soil type, made of isotropic or anisotropic grains, possibly with thermal stress effects, and irrespective of which material property is a random field.
机译:这些说明提供了对材料机械的两个方面的介绍:(i)随机性对缩放到有效本构响应和(ii)分形几何形状的影响。当尺度的分离不保持时,第一方面是相关的[即当主导(宏观)长度相对于微观尺度较大时,]。然后,需要重新检查连续固体力学的各种概念和开发的新方法。因此,我们专注于从统计卷元素(SVE)缩放到代表体积元素(RVE)。使用微机械测量,rve分别从SVE上设置的Dirichlet和Neumann边值问题的两种层次分配。虽然在(Ostoja-Starzewski,2001)中处理了线性导电和弹性微结构,但在这里,我们在(非)线性(Thermo)弹性,弹性塑性和粘弹性中回顾这种缩放。我们还发出了缩放功能的新概念,以及随机损伤力学中的尺度效果触摸。上述方法还允许一个问题提出问题:为什么在非弹性材料中观察到分形图案?在微丙烯酸弹性塑料材料的设置中解决了该问题,其晶粒水平特性是缺乏任何空间相关结构的弱噪声对信号随机场。我们发现,在Dirichlet或Neumann类型的单调载荷下,Rve级响应涉及形成分形图案并逐渐填充整个材料结构域的塑化晶粒。同时,应力 - 应变曲线中的尖锐扭结被平滑的过渡所取代。这是普遍的案例,用于各种不同弹性塑料材料的金属或土壤类型,由各向同性或各向异性晶粒制成,可能具有热应力效应,而且无论哪种材料属性都是随机的田间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号