首页> 外文会议>American Chemical Society National Meeting Exhibition >Beating the Bugs: Graphene and Polymer Coatings for Microbial Corrosion
【24h】

Beating the Bugs: Graphene and Polymer Coatings for Microbial Corrosion

机译:击败虫子:石墨烯和聚合物涂料用于微生物腐蚀

获取原文

摘要

During year 1998, National Association of Corrosion Engineers (NACE) estimated the national expenditure for metallic corrosion to reach nearly 276 Billion . The recent literature now speculates that the total costs for corrosion, including direct and indirect costs, are now reaching as high as ~ $1 trillion/year . The corrosion issues in drinking water and wastewater infrastructure itself costs $36 billion on an annual basis. Giant industries including oil plants, power plants, shipping, and the aviation are also susceptible to corrosion. Certain metallic structures are prone to microbial corrosion at ambient conditions . The engineering community continues is still surprised with the ability of tiny microbes (e.g bacteria and algae) to fail gigantic metallic structures . The microbes exist in the form of robust layers of a slimy biofilm that adheres on the metal surfaces and is often encapsulated in a matrix of extracellular polymeric substances . The eradication of biofilm requires mechanical forces and inhibitory chemicals . A well-cited example of MIC is the failure of emergency fire sprinkler systems (EFSS) due to the formation of pin-hole sized leaks and accumulation of microbial debris in the fittings. The biofilm (<100 μm) is invisible to naked-eye and can slip physical inspection as. The fire fighters can therefore be unaware of the MIC attack until EFSS proves to be non-functional during emergency . Water-handling equipments in water treatment, desalination units, storage tanks, power plants (e.g. heat exchangers), bridges, and marine applications (e.g. docks, piers, boat hulls) are all susceptible to MIC5. The periodic monitoring of MIC is expensive as it requires detection of constantly-evolving microbial population on the surfaces, and these techniques require sophistical laboratory infrastructure.
机译:1998年,全国腐蚀工程协会(NACE)估计了金属腐蚀的国家支出,以达到近2760亿。最近的文献现已推断出腐蚀的总成本,包括直接和间接成本,现在达到高达1万亿美元/年。饮用水和废水基础设施的腐蚀问题本身每年缴付360亿美元。包括石油植物,发电厂,航运等巨型产业也易受腐蚀的影响。某些金属结构在环境条件下容易产生微生物腐蚀。工程界仍然对微小微生物(例如细菌和藻类)失效巨大金属结构的能力仍然感到惊讶。微生物以粘附的生物膜的稳健层的形式存在,其粘附在金属表面上,并且通常在细胞外聚合物物质的基质中包封。根除生物膜需要机械力和抑制化学品。麦克风的一个良好的例子是紧急消防喷水灭火系统(EFSS)的故障,因为由于配件中的尖孔尺寸泄漏和微生物碎屑的积聚而形成,因此引起了紧急消防洒水系统(EFS)。生物膜(<100μm)是裸眼不可见的,可以防滑物理检查。因此,消防员可以不知道MIC攻击,直到EFSS在紧急情况下被证明是非功能。水处理,海水淡化单位,储罐,发电厂(例如热交换器),桥梁和海洋应用(例如码头,码头,船船壳)都容易受到MIC5的水处理设备。 MIC的周期性监测是昂贵的,因为它需要检测表面上的不断发展的微生物种群,并且这些技术需要Sophy统计实验室基础设施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号