首页> 外文会议>American Chemical Society National Meeting Exhibition >THERMONEUTRAL REFORMING OF LIQUID HYDROCARBONS FOR HYDROGEN PRODUCTION: EFFECT OF AROMATICS ADDITION IN HEAVY NAPHTHA
【24h】

THERMONEUTRAL REFORMING OF LIQUID HYDROCARBONS FOR HYDROGEN PRODUCTION: EFFECT OF AROMATICS ADDITION IN HEAVY NAPHTHA

机译:氢气生产液体烃的热源重整:重型石脑油中芳烃的作用

获取原文

摘要

Hydrogen-based fuel cells for automotive and stationary applications are gaining popularity for various reasons including their higher efficiencies and lower emissions.The infrastructure to deliver hydrogen is currently inadequate and the storage of hydrogen on- board a vehicle remains a major technical and economic hurdle.Use of liquid hydrocarbon fuels to generate hydrogen is being thought of as an immediate solution for large scale hydrogen production.[1]. The conversion of hydrocarbon fuels to syngas and hydrogen can be carried out by several processes,including steam reforming(SR), partial oxidation(PO),and auto thermal reforming(ATR).The choice of the reaction process to be used for on-board reforming depends on many factors,including the operating characteristics of the application(e.g.varying power demand,rapid startup,frequent shutdowns)and the type of fuel cell stack.SR is heat transfer-limited and as such does not respond rapidly to changes in the power demand (i.e.“load following”).SR is currently the predominant industrial method for producing hydrogen.POX and ATR,on the other hand, were developed mainly for small-scale applications or for conversion of heavy feedstocks[2].Inui et al.[4-6]first explored the ultra-rapid thermo-neutral reforming process for natural gas and Liquefied Petroleum Gas(LPG)using a multi-component catalyst. Conceptually,it is similar to the ATR process where two reactions take place in the process.However,the TNR utilizes a novel paradigm where catalytic combustion and steam reforming functions exist on the same catalyst.The heat produced from catalytic combustion induces the endothermic steam reforming of hydrocarbons on the same catalyst surface leading to ultra-rapid reforming.In thermo-neutral reforming process the catalyst-bed temperature theoretically and adiabatically rises to a very high temperature as a result of the fuel combustion.However,in reality, the catalyst-bed temperature is forced to decrease by the large endothermic heat sink of the steam reforming reaction.The catalyst- bed temperature can be maintained at a safe and practical temperature range.Because of this characteristic,the reactor size can be reduced by two orders of magnitude compared to conventional steam reforming method.
机译:用于汽车和固定应用的氢气燃料电池是由于各种原因获得普及,包括其效率更高,较低的排放。提供氢的基础设施目前不充分,氢气储存车辆仍然是一个主要的技术和经济障碍。使用液态烃燃料生成氢正在被认为是大规模氢生产的即时溶液。[1]。烃燃料与合成气和氢的转化可以通过几种方法进行,包括蒸汽重整(SR),部分氧化(PO)和自动热重整(ATR)。选择反应过程的选择董事会改革取决于许多因素,包括应用程序的操作特性(例如,例如电力需求,快速启动,频繁关闭)和燃料电池堆栈的类型是热传输限制,因此不迅速响应变化电力需求(即“负载跟随”)。SR是目前生产氢气的主要产业方法。另一方面,主要用于小规模应用或转化重物[2]。inui开发的主要工业方法。使用多组分催化剂首先探索了用于天然气和液化石油气(LPG)的超快速热中性重整过程。概念上,它类似于ATR过程,其中在该过程中进行两种反应。然而,无论多个反应,TNR采用新型范例,其中存在于相同的催化剂上存在催化燃烧和蒸汽重整功能。由催化燃烧产生的热量诱导吸热蒸汽重整在相同催化剂表面上的烃导致超快速重整。在热中性重整过程中,催化剂床温度理论上和绝热地由于燃料燃烧而导致的非常高的温度。然而,实际上,催化剂 - 通过蒸汽重整反应的大吸热散热器被迫降低床温。催化剂床温度可以保持在安全和实际温度范围内。因为这种特性,电反应器尺寸可以减少两个数量级与常规蒸汽重整法相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号