首页> 外文会议>International Congress on Ultrasonics >Particle Manipulation Using Acoustic Radiation Forces in Micromachined Devices
【24h】

Particle Manipulation Using Acoustic Radiation Forces in Micromachined Devices

机译:使用微机械装置中的声学辐射力进行粒子操纵

获取原文

摘要

Acoustic radiation forces are increasingly used for the handling of micron sized particles suspended in a fluid. The primary radiation forces arise as a nonlinear effect when an acoustic wave interacts with a single particle. In addition, secondary acoustic forces arise when several particles are present. Typically a resonance (at upper kHz to lower MHz frequencies) is set up in the system consisting of chip, fluid, particles and transducer. Both solid and fluid parts vibrate and are excited, for example, by piezoelectric elements. The pattern of the pressure distribution in the fluid then determines where the particles are located. The analytical formula by Gor'kov predicts the location of spherical compressible particles in the bulk of the fluid based on the acoustic field. Several fields might be superimposed to produce time independent or time varying patterns of particles in the fluid, resulting in the formation of lines, clumps or even in particle rotation. Excellent agreement between theory and experiment is found. For further particle handling, the acoustic manipulation can be combined with microfluidic flow, microgrippers, wire loops, optical tweezers, DEP, etc. depending on the application. In more complicated situations numerical solutions have to be found. Recently a code has been developed that can compute forces on fixed rigid particles in viscous fluids in general situations, e.g. for particles near walls or near other particles, as well as for particles of arbitrary shape. The code is based on the FVM (Finite Volume Method), solves the Navier-Stokes equations directly and also yields the acoustic streaming pattern. The viscosity increases the apparent size of the particle due to the Stokes layer, with the effect that the force is also increased.
机译:声辐射力越来越多地用于将悬浮在流体中的微米尺寸粒子的处理。当声波与单个颗粒相互作用时,初级辐射力作为非线性效应。另外,当存在几颗颗粒时出现次级声学力。通常,在由芯片,流体,粒子和换能器组成的系统中建立了共振(在上部KHz到较低的MHz频率)。固体和流体部件振动,例如通过压电元件激发。然后,流体中的压力分布的图案确定颗粒所在的位置。 Gor'kov的分析配方在基于声场的大部分流体中的球形可压缩粒子的位置预测。可以叠加几个字段以产生流体中的颗粒的时间独立或时间变化模式,导致线,丛或即使在颗粒旋转中形成。发现理论与实验之间的良好协议。对于进一步的颗粒处理,根据应用,声学操作可以与微流体流动,微血管,线圈,光学镊子,DEP等组合。在更复杂的情况下,必须找到数值解决方案。最近,已经开发了一种代码,其可以在一般情况下粘性流体中的固定刚性颗粒上的力计算力。对于墙壁或靠近其他颗粒附近的颗粒,以及任意形状的颗粒。代码基于FVM(有限卷方法),直接解决Navier-Stokes方程,并产生声学流模式。粘度增加了由于斯托克斯层引起的颗粒的表观尺寸,其效果也增加了力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号