【24h】

Graph Spectra of Carbon Nanotube Networks: Molecular Communication

机译:碳纳米管网络的曲线图:分子通信

获取原文

摘要

The capability of random carbon nanotube networks (CNT) to carry and fuse information while simultaneously performing sensing is explored. One may imagine small CNT networks with functionalized nanotubes simultaneously sensing multiple targets in-vivo for unprecedented understanding of biological pathways. This is clearly distinct from the traditional convoluted approach of using CNT networks to construct transistors that are in turn used to construct communication networks. With random CNT network layouts, routing of information is an integral part of the physical layer [2]. A Mathematica [9] analysis for evaluating random CNT networks has been developed and used to verify design characteristics [3,4,5]. The graph spectrum of the CNT network is used to determine resistance and electron mobility characteristics. Thus, we have been able to find relationships among CNT network structure and electron mobility. The nanotube density allows for an increase in the number of bits per square meter of information transfer compared to wireless communication. Consider a wireless network; a typical bit-meters/second capacity is limited in a traditional wireless network [6]. The maximum wireless capacity approximation in a wireless broadcast media is contrasted with a CNT network; we look at the efficiency of CNT networks to carry information and compare with theoretical limits.
机译:探讨了随机碳纳米管网络(CNT)的能力,同时进行感测同时进行感测。可以想象具有功能化纳米管的小型CNT网络,同时感测多个靶标以进行前所未有的对生物途径的理解。这显然与使用CNT网络的传统复杂方法不同,构造又用于构造通信网络的晶体管。对于随机CNT网络布局,信息的路由是物理层的组成部分[2]。用于评估随机CNT网络的Mathematica [9]分析并用于验证设计特性[3,4,5]。 CNT网络的图谱用于确定电阻和电子迁移率特性。因此,我们能够在CNT网络结构和电子移动性之间找到关系。与无线通信相比,纳米管密度允许增加每平方米信息传输的比特数量的数量。考虑无线网络;典型的比特仪/第二容量在传统的无线网络中有限[6]。无线广播介质中的最大无线容量近似与CNT网络形成鲜明对比;我们来看看CNT网络的效率,以携带信息并与理论极限进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号