首页> 外文会议>Propulsion and Energy Forum >Lightweight Thrust Chamber Assemblies using Multi-Alloy Additive Manufacturing and Composite Overwrap
【24h】

Lightweight Thrust Chamber Assemblies using Multi-Alloy Additive Manufacturing and Composite Overwrap

机译:轻质推动室组件使用多合金添加剂制造和复合材料超包

获取原文

摘要

Additive Manufacturing (AM) has brought significant design and fabrication opportunities for complex components with internal features such as liquid rocket engine thrust chambers not previously possible. This technology allows for significant cost savings and schedule reductions in addition to new performance optimization through weight reduction and increased margins. Specific to regeneratively-cooled combustion chambers and nozzles for liquid rocket engines, additive manufacturing offers the ability to form the complex internal coolant channels and the closeout of the channels to contain the high pressure liquid propellants with a single operation. Much of additive manufacturing development has focused on monolithic alloys using Laser Powder Bed Fusion (L-PBF), which do not allow for complete optimization of the structure. The National Aeronautics and Space Administration (NASA) completed feasibility of an AM bimetallic L-PBF GRCop-84 copper-alloy combustion chamber with an AM electron beam freeform Inconel 625 structural jacket under the Low Cost Upper Stage Propulsion (LCUSP) Project. A follow-on project called Rapid Analysis and Manufacturing Propulsion Technology (RAMPT) is under development to further expand large-scale multi-alloy thrust chambers while maturing composite overwrap technology for significant weight savings opportunities. The RAMPT project has three primary objectives: 1) Advancing blown powder Directed Energy Deposition (DED) to fabricate integral-channel large scale nozzles, 2) Develop composite overwrap technology to reduce weight and provide structural capability for thrust chamber assemblies, and 3) Develop bimetallic and multi-metallic additively manufactured radial and axial joints to optimize material performance. In addition to these primary manufacturing developments, analytical modeling efforts compliment the process development to simulate the AM processes to reduce build failures and distortions. The RAMPT project is also maturing the supply chain for various manufacturing processes described above in addition to L-PBF of GRCop-42. This paper will present an overview of the RAMPT project, the process development and hardware progress to date, material and hot-fire testing results, along with planned future developments.
机译:添加剂制造(AM)为复杂的部件带来了显着的设计和制造机会,其中包含内部特征,例如未以前不能的液体火箭发动机推力室。除了通过减肥和增加的边距增加,此技术还可允许显着的成本节约和预览时间表减少。特定于用于液体火箭发动机的再生冷却燃烧室和喷嘴,添加剂制造能够形成复杂的内部冷却剂通道的能力和通道的收集,以包含具有单个操作的高压液体推进剂。添加剂制造显影的大部分都集中在使用激光粉床融合(L-PBF)的单片合金,其不允许完全优化结构。美国国家航空航天局(NASA)完成了AM双金属L-PBF GRCOP-84铜合金燃烧室的可行性,在低成本的上阶段推进(LCUSP)项目下,具有AM电子束自由形式的625结构夹克。正在开发出现快速分析和制造推进技术(Rampt)的后续项目,以进一步扩大大型多合金推力室,同时成熟复合超包技术,以实现重大储蓄机会。拉姆斯特项目有三个主要目标:1)推进吹粉定向能量沉积(DED)以制造整体通道大型喷嘴,2)开发复合材料超包技术以减轻重量并为推力室组件提供结构能力,3)发育双金属和多金属加剧制造的径向和轴向接头以优化材料性能。除了这些主要的制造业发展外,分析模型努力赞扬流程开发,以模拟AM流程,以减少构建故障和扭曲。除了GRCOP-42的L-PBF之外,Rampt项目还可以在上述各种制造方法的供应链中成熟。本文将概述拉姆斯特项目,流程开发和硬件进展到迄今为止,材料和热火测试结果,以及计划未来的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号