首页> 外文会议>AIAA Propulsin and Energy Forum;Conference on Gas Turbine Engines >ROTATIONAL AND SHOWER HEAD COOLING HOLE EFFECTS ON LEADING-EDGE JET IMPINGEMENT HEATTRANSFER
【24h】

ROTATIONAL AND SHOWER HEAD COOLING HOLE EFFECTS ON LEADING-EDGE JET IMPINGEMENT HEATTRANSFER

机译:旋转和淋浴头冷却孔对前沿喷射冲击热传递的影响

获取原文
获取外文期刊封面目录资料

摘要

Jet Impingement and shower head cooling are critical cooling techniques used to maintain turbine blades at operational temperatures. Jet impingement is extremely effective at removing large amounts of heat from the target surface, the inner blade wall, through stagnation point heat transfer. Shower head cooling produces a cooling film around the exterior of the blade, in return reducing external heat transfer. For validation studies and design predictions, the modeling of rotational effects is critical and has been a challenge for eddy viscosity turbulence models. The current work consisted of investigating the jet impingement effectiveness with rotational effects for two different cooling flow rates at various rotational speeds. The analysis was conducted using STAR CCM+ with the three equation Lag Elliptic Blending K-Epsilon eddy viscosity turbulence model. The blade used was NASA/General Electrics E~3 row 1 blade. The model consisted of a quarter of the blade-span to reduce computational expense and only one jet was analyzed. A flow field analysis was performed on the free jet region to analyze the potential core velocity and turbulent kinetic energy profiles. Nusselt Number spanwise distribution and external blade temperature profiles were also evaluated. The investigation showed that rotational effects produce turbulent kinetic energy within the jet's potential core. Maximum Nusselt Number was achieved when Coriolis forces were equivalent to centrifugal forces. A mathematical expression for the previous statement is the tangential component of jet velocity is equal to one half of the product of rotational speed with radius from engine centerline, v_j(^e)_θ = (Ωr)(^e)_θ/2.
机译:喷射冲击和淋浴头冷却是用于在操作温度下维持涡轮机叶片的临界冷却技术。喷射冲击在从目标表面,内叶壁上通过停滞点传热来消除大量热量。淋浴头冷却在叶片外部产生冷却膜,以减少外部传热。对于验证研究和设计预测,旋转效应的建模至关重要,对涡流粘度湍流模型一直是挑战。目前的工作包括在各种旋转速度下调查具有两种不同冷却流速的旋转效应。使用Star CCM +进行分析,具有三方程滞后混合K-Epsilon涡粘度湍流模型。使用的刀片是NASA /通用电气E〜3排1刀片。该模型由四分之一的刀片跨度组成,以减少计算费用,并且仅分析一个喷射。在自由喷射区域上进行流场分析,以分析潜在的核心速度和湍流动力学能量谱。还评估了纽带数霉三种分布和外部叶片温度型材。该研究表明,旋转效应在喷射潜在的核心内产生湍流动能。当科里奥利力量相当于离心力时,实现了最大露珠。前一个陈述的数学表达式是射流速度的切向分量等于旋转速度乘以从发动机中心线的半径的一半,V_J(^ e)_θ=(ωr)(^ e)_θ/ 2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号