首页> 外文会议>AIAA Propulsin and Energy Forum;Conference on Electric Aircraft Technologies >Integrated Propulsive and Thermal Management System Design for Optimal Hybrid Electric Aircraft Performance
【24h】

Integrated Propulsive and Thermal Management System Design for Optimal Hybrid Electric Aircraft Performance

机译:用于最优混合动力电机性能的集成推进和热管理系统设计

获取原文

摘要

The use of hybrid-electric propulsion systems aboard aircraft present opportunities for improved vehicle range and endurance, reduced fuel burn, as well as lower acoustic and thermal signatures. The energy benefits anticipated by such architectures may be offset, however, by new thermal management challenges introduced by the heat generated within the components of a hybrid-electric power train. A system level modeling approach that integrates the propulsion and thermal management subsystems is therefore critical to providing insight into the various tradeoffs. The current paper explores the reduction in fuel consumption offered by a series hybrid propulsion system using an integrated system modeling approach. A numerical model of the propulsive, thermal management, and flight dynamics subsystems was developed to simulate component and system level performance of a fixed wing, 11901 lb. medium altitude long endurance (MALE) vehicle, conventionally driven by a turboprop engine. . A thermal management system was integrated with the propulsive subsystem which utilized closed loop fuel cooling for electrical devices within the hybrid drive train, as well as a Polvalphaolephin (PAO) coolant loop to absorb the heat from several aircraft level auxiliary heat loads. Ram air was utilized to provide a heat sink for the PAO cooling loop, as well as the fuel loop to ensure return-to-tank fuel temperature limits are maintained. For a notional 18 hour flight mission, with respect to the conventional propulsion system, a fuel savings of 750 lb. was obtained, despite a gain of 708 lb. associated with the added weight of electrical devices within the drive train.
机译:使用混合电动推进系统用于船上改进的车辆范围和耐力,减少燃油消耗飞机本机会,以及较低的声和热特征。通过这样的体系结构所预期的能量效益可然而偏移量,通过由混合动力电动动力传动系的部件内产生的热量引入了新的热管理问题。集成了推进和热管理子系统的系统级建模方法因此提供洞察各种折衷的关键。目前本文探讨使用集成系统建模方法中的一系列混合动力推进系统提供的燃料消耗的减少。推进,热管理,和飞行动力学子系统的数字模型的开发是为了模拟分量和固定翼的系统级性能,11901磅中等高度长耐力(男性)车辆,通常通过一个涡轮螺旋桨发动机驱动。 。一种热管理系统与利用闭环燃料的混合动力驱动系内的冷却用于电装置的推进子系统,以及一个Polvalphaolephin(PAO)冷却剂回路以从几架飞机水平辅助热负载吸收该热集成。冲压空气被利用以提供PAO冷却回路的散热器,以及燃料循环,以确保返回到燃料箱的燃料的温度限制被保持。对于一个假想18小时飞行任务,相对于传统的推进系统,得到750磅的燃料节省,尽管与所述传动系内的电设备的额外重量相关联的708磅的增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号