首页> 外文会议>SPIE Conference on Label-Free Biomedical Imaging and Sensing >Non-invasive Spectral Analysis of Osteogenic and Adipogenic Differentiation in Adipose Derived Stem Cells using Dark-field Hyperspectral Imaging Technique
【24h】

Non-invasive Spectral Analysis of Osteogenic and Adipogenic Differentiation in Adipose Derived Stem Cells using Dark-field Hyperspectral Imaging Technique

机译:浅析脂肪型高光谱成像技术在脂肪衍生干细胞中骨质发生和脂肪发生分化的非侵袭性光谱分析

获取原文

摘要

Mesenchymal stem cells derived from adult adipose tissue possess the ability to differentiate into adipocytes, osteocytes,and chondrocytes which in turn can be developed into adipose tissues, cartilages, and bones. This regenerativecharacteristics has fueled the need to define improved stem-cell analysis protocol for enabling investigation of thedifferentiation process efficiently, economically, and non-invasively by start-of-the art imaging modalities. Here, wehave demonstrated hyperspectral microscopy-based label-free imaging approach to study ASCs at a single-cell level.ASCs has been stimulated to become osteocytes using the growth media containing –glycerophosphate, L-ascorbic acid2-phosphate sesquimagnesium salt hydrate, and dexamethasone. Further, ASCs were stimulated to form adipocytes usingthe growth media containing biotin, pantothenate, bovine insulin, IBMX, penicillin, rosiglitazone, and dexamethasone.In the present study, dark-field based hyperspectral Imaging (HSI) technique has been utilized to image single as well asmultiple osteoblasts and adipocytes in salt media grown on the glass substrate. The spectral response of the cells at eachpixel of the images were recorded in the visible-NIR range (400-900 nm). Response is stored in the three dimensionaldata-cube formed with two spatial dimensions and one spectral dimension. No special tagging or staining of the ASCsand derived osteoblasts, adipocytes has been done, as more likely required in traditional microscopy techniques. Incidentlight is diffracted at multiple angles and hence scattering response received after transmission is different even within thesingle cell due to sub-cellular heterogeneities present in the control and differentiating ASCs.Based on dark-field images of control and differentiated sample, we found significant structural and spectraldistinctiveness at day 14 onwards for differentiated osteoblasts and at day 6 onwards for adipocytes. Fourier filtering ofimages provides good visual inspection of structural modifications. Spectral data from the cellular surface andintracellular markers, and secreted molecules is stored to build the spectral libraries. Matrix-assisted laserdeposition/ionization (MALDI) spectrometry technique is performed on control and differentiated cells to obtain insightof sub-cellular single molecules, mineral deposits, fats, proteins, and other biological mono-constituents. In thehyperspectral images, the entire spectrum is stored within each pixel as a vector where the number of spectral bands(wavelength range) equals vector dimension and the corresponding intensity signifies the component of the individualvector. Spectral signatures from the identified lipids are then matched to the in vitro stem-cells via spectral anglemapping (SAM) algorithms. By computing angle between two pixels, remarkable spectral similarity and dissimilarity areidentified between control and differentiated stem cells. Pseudo-colored differentiating maps are produced by calibrating‘match’ threshold. Secondary validation to the HSI is provided by evaluating optical images with template-match andedge-detection algorithms as well as second-harmonic generation microscopy to investigate osteoblasts.Establishing this label-free protocol with minimum specimen preparation enables promising outcomes to overcomephototoxicity effect of traditional microscopy such as fluorescence/staining bleaching errors. The study would lead tohigh-throughput identification of patient specific derived cells for clinical use preventing mass rejection, and advance ourunderstanding of the behavior of stem cellular clusters undergoing adipogenic and osteogenic differentiation.
机译:来自成人脂肪组织的间充质干细胞具有分化为脂肪细胞,骨细胞的能力,和软骨细胞又可以开发成脂肪组织,软骨和骨骼。这个再生特点推动了需要定义改进的干细胞分析方案,以便能够调查通过艺术开始的成像方式有效地,经济地和非侵入性的分化过程。在这里,我们已经证明了基于极谱的显微镜的无标签成像方法,以在单个细胞水平上学习ASC。通过含有含有甘油磷酸盐的生长培养基,促刺激ASCS以变为骨细胞,L-抗坏血酸2-磷酸级镁盐水合物和地塞米松。此外,刺激ASCS以使用脂肪细胞使用含有生物素,泛酸,牛胰岛素,IBMX,青霉素,罗格列酮和地塞米松的生长培养基。在本研究中,基于暗场的高光谱成像(HSI)技术已被用于图像和图像在玻璃基板上生长的盐培养基中的多种成骨细胞和脂肪细胞。每个细胞的光谱响应图像的像素被记录在可见NIR范围内(400-900nm)。响应存储在三维中数据 - 立方体形成有两个空间尺寸和一个光谱尺寸。没有特殊的标记或染色ASC和衍生的成骨细胞,已经进行了脂肪细胞,以传统的显微镜技术更可能是更可能的。事件光以多个角度衍射,因此甚至在传输之后接收的散射响应由于控制中存在的亚细胞异质性和分化asc。基于对照和差异化样本的暗场图像,我们发现了显着的结构和光谱在第14天的差异为不同的成骨细胞,并在第6天为脂肪细胞的第6天。傅里叶过滤图像提供了结构修改的良好目视检查。来自蜂窝表面的光谱数据和将细胞内标记物和分泌的分子储存以构建光谱文库。矩阵辅助激光沉积/电离(MALDI)光谱法进行对照和分化的细胞进行洞察力亚细胞单分子,矿物沉积物,脂肪,蛋白质和其他生物单组分。在里面高光谱图像,整个频谱存储在每个像素内作为频谱频带数量的矢量(波长范围)等于矢量维度,相应的强度表示个人的组件向量。然后通过光谱角与鉴定的脂质的光谱签名与体外干细胞匹配映射(SAM)算法。通过两个像素之间的计算角度,可显着的光谱相似性和异化性在对照和分化的干细胞之间鉴定。伪彩色的差异图是通过校准产生的'匹配'阈值。通过评估使用模板匹配和模板匹配的光学图像提供对HSI的二次验证边缘检测算法以及二次谐波产生显微镜,以研究成骨细胞。使用最低标本制备建立此标签的协议使得能够克服承诺的结果传统显微镜的光毒性效应,如荧光/染色漂白误差。这项研究会导致患者特异性衍生细胞的高通量鉴定,用于临床用途防止大众排斥,提前推进理解脂肪植物和成骨分化的干细胞簇的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号