首页> 外文会议>ASME Pressure Vessels amp;amp;amp; Piping Conference >NEW MODEL FOR DUCTILE RUPTURE UNDER CYCLIC LOADING CONDITIONS
【24h】

NEW MODEL FOR DUCTILE RUPTURE UNDER CYCLIC LOADING CONDITIONS

机译:循环载荷条件下的韧性破裂的新模型

获取原文

摘要

Experiments have shown that ductile failure occurs sooner under cyclic loading conditions than under monotone ones. This reduction of ductility probably arises from an effect called "ratcheting of the porosity" that consists of a continued increase of the mean porosity during each cycle with the number of cycles. Improved micromechanical simulations confirmed this interpretation. The same work also contained a proof that Gurson s classical model for porous ductile materials does not predict any ratcheting of the porosity. In a recent work [6], the authors proposed a Gurson-type "layer model" better fit than Gurson's original one for the description of the ductile behavior under cyclic loading conditions, using the theory of sequential limit analysis. A very good agreement was obtained between the model predictions and the results of the micromechanical simulations for a rigid-hardenable material. However, the ratcheting of the porosity is a consequence of both hardening and elasticity, and sequential limit analysis is strictly applicable in the absence of elasticity. In this work, we make a proposal to take into account elasticity in the layer model through the definition of a new objective stress rate leading to an accurate expression of the porosity rate accounting for both elasticity and plasticity. This proposal is assessed through comparison of its predictions with the results of some new micromechanical simulations performed for matrices exhibiting both elasticity and all types of hardening: isotropic, kinematic and mixed, to better comply with the hypothesis made to derive the model
机译:实验表明,在循环负载条件下发生的延展性失效比单调的失效。这种延展性的减小可能是由称为“孔隙率的棘轮”的效果产生,该效果包括在每个循环期间平均孔隙率的持续增加,其循环次数。改进的微机械模拟确认了这种解释。同样的工作还含有一种证据,即多孔延性材料的Gurson S古典模型不能预测孔隙率的任何棘轮。在最近的工作[6]中,作者提出了一种比Gurson的原始的Gurson-型“层模型”更好地适合,用于使用顺序限制分析理论在循环负载条件下进行延性行为的描述。在模型预测和微机械模拟的模型预测和刚性硬化材料的结果之间获得了非常好的协议。然而,孔隙率的棘轮是硬化和弹性的结果,并且在没有弹性的情况下严格适用顺序限制分析。在这项工作中,我们通过新的客观应力速率的定义,提出了一种提案,通过新的客观应力速率的定义来说,这导致孔隙率占弹性和可塑性的精确表达。通过比较其预测来评估该提案,与表现出弹性和所有类型硬化的基质的一些新的微机械模拟的结果进行评估:各向同性,运动和混合,以更好地遵守所做模型的假设

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号