首页> 外文会议>SPE/AAPG/SEG Unconventional Resources Technology Conference >Fiber Optic Strain Monitoring of Hydraulic Stimulation:Geomechanical Modeling and Sensitivity Analysis
【24h】

Fiber Optic Strain Monitoring of Hydraulic Stimulation:Geomechanical Modeling and Sensitivity Analysis

机译:液压刺激光纤应变监测:地质力学建模与敏感性分析

获取原文

摘要

Fiber Optic Sensing,including both low-frequency Distributed Acoustic Sensing(DAS)and Distributed Strain Sensing(DSS),can be used to record strain rate or strain for hydraulic fracturing monitoring in an offset well.However,current work focusses on acquisition,processing,and qualitative interpretation.We investigated the modeling of DAS and DSS strain responses to hydraulic fractures during stimulation process.The modeling work provides valuable insights to understand low-frequency DAS and DSS strain measurements during hydraulic stimulation.We used the Displacement Discontinuity Method(DDM)to model the strain/strain rate field around kinematic propagating fractures.This efficient method provides a quick assessment of models with various fracture extents and net pressures.It also allows simulating the strain responses to a network of fractures in consideration of their interactions.During the stimulation stage of hydraulic treatment,the fracture propagation is modeled by prescribing gradually increased fracture size and calculating the displacement discontinuities that representing fractures at each step.After the stimulation stops,we assume the fracture extent will not change but the net pressure within the fracture gradually decreases due to fluid leakoff.We calculate the displacement discontinuities representing fractures using the fracture extent and the stress boundary conditions on fractures.The strain and stress projected along the monitoring well are calculated from these displacement discontinuities at each time step and converted to strain rate by taking their time derivatives.We compared and verified our modeling with field observations from the Hydraulic Fracturing Test Site 2(HFTS2)project,a research experiment performed in the Delaware Basin,West Texas.For a horizontal monitoring well,modeling results explain heart-shaped extending pattern before a fracture hit,polarity flip during stimulation due to fracture interaction,and V-shape patterns when a fracture bypasses the monitoring well from above or below without intersecting.For a vertical monitoring well,modeling shows the different characters of low-frequency DAS and DSS responses when a fracture is near and far away from a vertical monitoring well for both elliptic fractures and layered fractures.Geomechanical modeling lays the groundwork for quantitative interpretation and fracture-geometry estimation.Our modeling approach provides insight into unraveling the patterns observed by far-field low-frequency DAS and DSS during hydraulic fracturing.Synthetic modeling results of various scenarios can also be used to improve fiber-optic acquisition design for stimulation monitoring.Low-frequency DAS and DSS modeling and monitoring integrate information on geomechanics,fluid flow,pressure distribution,earth properties,and fracture propagation.The modeling results and field observations can also be compared and validated with engineering data such as pressure and temperature,with geological data such as cores,and with geophysics data such as microseismic and time-lapse seismic,to provide a comprehensive understanding of hydraulic fractures.
机译:光纤感测,包括低频分布声学传感(DAS)和分布式应变感测(DSS),可用于记录液压压裂监测的应变速率或菌株在偏移中。然而,当前工作侧重于采集,加工和定性解释。我们调查了刺激过程中DAS和DSS应变对液压骨折的响应的建模。建模工作提供了理解液压刺激期间的低频DAS和DSS应变测量的有价值的见解。我们使用了位移不连续性方法(DDM )为了模拟运动学传播骨折周围的应变/应变速率场。本发明的有效方法可以快速评估各种骨折范围和净压力的模型。还允许考虑到他们的相互作用模拟骨折网络的应变响应液压处理的刺激阶段,裂缝繁殖是通过规定的遗传制定的在刺激停止时,通过骨折尺寸和计算代表骨折的位移不连续性,我们假设断裂程度不会改变,但由于流体泄漏,断裂内的净压力逐渐减小。我们计算代表骨折的位移不连续性使用裂缝范围和裂缝应力边界条件。沿着监测井突出的应变和应力由这些位移不连续性计算每次步骤并通过采用时间衍生物转换为应变率。我们比较并验证了我们与现场的建模来自液压压裂试验部门2(HFTS2)项目的观察,在西德克萨斯州特拉华盆地进行了研究实验。对于水平监测良好,建模结果在裂缝击中之前解释心形延伸模式,刺激期间的极性翻转骨折相互作用,和v形图案CTRE绕过上方或下方的监测良好,没有交叉。对于垂直监测良好,建模显示了当骨折近距离易于监测椭圆骨折和分层时,模型显示了低频DAS和DSS响应的不同特征骨折。地理建模为定量解释和骨折 - 几何估计奠定了基础。您的建模方法在液压压裂期间揭示了揭开了远场低频DAS和DSS观察到的图案。也可以使用各种场景的合成建模结果改进刺激监测的光纤采集设计。频率DAS和DSS建模和监控集成地质力学,流体流动,压力分布,地球性能和断裂传播的信息。也可以进行比较和验证建模结果和现场观察具有工程数据,如压力和温度,与地质核心等核心和地球物理数据如微震和延时地震,以提供对液压骨折的全面了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号