首页> 外文会议>SPE/AAPG/SEG Unconventional Resources Technology Conference >A Multiscale Digital Rock Workflow for Shale Matrix Permeability Prediction
【24h】

A Multiscale Digital Rock Workflow for Shale Matrix Permeability Prediction

机译:用于页岩矩阵渗透率预测的多尺度数字摇滚工作流程

获取原文

摘要

We present a multiscale digital rock workflow to predict shale matrix permeability,that combines firstprinciples molecular dynamics and lattice Boltzmann flow simulations.Inputs are molecular models for the organic shale content,shale 3D microscopy images,fluid composition,pressure and temperature.By complementing the flow in the 3D image resolved pore regions with effective transport in the unresolved pore organic regions,the overall estimation of the shale matrix permeability can be improved.In this workflow a 3D digital rock model is created from Focused Ion Beam-Scanning Electron Microscope(FIB-SEM)images of shale rocks.In this model,solid mineral grains and pores are identified as well as the organic material,which has a nano-scale pore structure that is not fully resolved by FIB-SEM imaging,but contributes a significant fraction of the total gas shale storage,and is also known to allow for gas transport.Previous work(Fager et al.2019)has shown that including an effective organic material gas permeability can have a large impact on the overall shale sample permeability.One of the main components of shale organic material is nano-porous kerogen.Given the lack of experimental data on kerogen transport properties,alternatively molecular models can be used in combination with a multiscale lattice Boltzmann model(LBM)to predict overall shale matrix permeability.In the molecular modeling part of this workflow,a simulation box containing a number of kerogen molecules is used to construct a condensed kerogen structure using molecular dynamics(MD).Density and porosity of the condensed kerogen structure are compared with published data.Gas adsorption isotherms of methane in these kerogen structures are computed at different pressure and temperature conditions using the grand canonical Monte Carlo(GCMC)method.Our simulation results show that at a given temperature,the total methane uptake in the kerogen pore structure increases with pressure,while the excess methane adsorption first increases and then decreases.Based on the configurations obtained from the GCMC simulation,a MD simulation is used to compute the self-diffusion coefficient of methane through kerogen from the resulting trajectories.We observed that the self-diffusion coefficient does not change significantly with pressure.Finally,an effective kerogen permeability to methane is computed from the self-diffusion coefficient and used in a multiscale LBM flow simulation model to predict overall shale matrix permeability.Results are more realistic for the overall shale sample permeability when kerogen permeability is considered.
机译:我们展示了多尺度数字摇滚工作流程来预测页岩矩阵渗透率,它结合了名字分子动力学和格子Boltzmann流量模拟。对有机页岩含量的分子模型,页岩3D显微镜图像,流体成分,压力和温度。相互补充在三维图像中,在未解决的孔隙有机区域中具有有效传输的孔区域,可以改善页岩矩阵渗透率的总估计。在该工作流程中,3D数字岩模型由聚焦离子束扫描电子显微镜(FIB- SEM)SHALE岩石图像。在该模型中,鉴定固体矿物颗粒和孔隙以及有机材料,其具有通过FIB-SEM成像未完全解决的纳米级孔结构,但有助于大部分总天然气页岩储存,也已知允许燃气运输。另外的工作(Fager等,Fager等,包括有效的有机物材料透气性可对整体页岩样品渗透性产生很大的影响。页岩有机材料的主要成分是纳米多孔Kerogen.give缺乏关于迁移性的实验数据,可选地可以组合使用分子模型多尺寸晶格Boltzmann模型(LBM)以预测整体页岩矩阵渗透性。在该工作流程的分子建模部分中,使用含有多个角蛋白分子的模拟盒使用分子动力学(MD).densty和将稠合的Kerogen结构的孔隙率与公开的数据进行比较。使用大规范蒙特卡罗(GCMC)方法在不同的压力和温度条件下计算甲烷中的甲烷的吸附等温线。使用大规范蒙特卡罗(GCMC)方法计算。仿真结果表明在给定温度下, Kerogen孔隙结构中的总甲烷摄取随压力而增加,而过量的甲烷Adsor PtiOion首先增加然后减少。基于从GCMC仿真获得的配置中,MD模拟用于从所得轨迹中通过角膜引发来计算甲烷的自扩散系数。我们观察到自扩散系数不会显着变化通过压力。最后,从自扩散系数计算对甲烷的有效后渗透性,并且在多尺度LBM流模拟模型中使用以预测整体页岩矩阵渗透性。当考虑后磁性渗透性时,可以对整体页岩样品渗透性更加现实。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号