首页> 外文会议>SPE Asia Pacific Oil and Gas Conference and Exhibition >A Model of Gas Transport Through Shale Reservoirs Including the Effects of Real Gas,Gas Adsorption and Stress Dependent Permeability
【24h】

A Model of Gas Transport Through Shale Reservoirs Including the Effects of Real Gas,Gas Adsorption and Stress Dependent Permeability

机译:通过页岩储层的气体输送模型,包括实际气体,气体吸附和应力依赖性渗透性的影响

获取原文

摘要

Shale reservoirs contain predominantly micro and mesopores(<50 nm),within which gas is stored as free or adsorbed gas. Due to the ultra-small pore size,multiple transport mechanisms coexist in shale reservoirs,including gas slippage,Knudsen diffusion of free gas and surface diffusion of adsorbed gas. In this work,we propose a new transport model,valid for all ranges of Knudsen number,which combines all transport mechanisms with different weighting coefficients. To quantify the effects of influence factors,we introduce the compressibility factor for real gas effect and effective pore radius for gas adsorption and stress dependence. The model is proven to be more accurate than existing models since the deviation of the analytical solution of our model(3%)from published molecular simulation data is lower than that of existing models(10~20%). Based on this model,we compare(1)the contribution of each transport mechanism to gas transport in pores of different radii,(2)shale permeability measured in laboratory and at reservoir conditions,and(3)permeability of nanopores and natural fractures. It is found that gas transport is dominated by gas slippage and surface diffusion when the pore radius is over 10 nm and below 5 nm,respectively. Knudsen diffusion only becomes significant when the pore radius is between 2 and 25 nm and pore pressure is below 1000 psi. Furthermore,laboratory measurements usually over-estimate shale permeability. We also propose a promising enhanced gas recovery method,which is to open and prop up closed natural fractures using micro size proppants.
机译:页岩储层含有主要的微型和中孔(<50nm),在其中气体作为自由或吸附的气体储存。由于超小孔尺寸,多个运输机制在页岩储层中共存,包括气体滑动,可吸附气体的knudsen扩散和吸附气体的表面扩散。在这项工作中,我们提出了一种新的传输模型,适用于所有范围的knudsen号码,这将所有具有不同加权系数的传输机制相结合。为了量化影响因素的影响,我们介绍了真实气体效果和有效孔径的可压缩因子,用于气体吸附和应力依赖性。被证明的模型比现有模型更准确,因为我们的模型的分析解决方法(3%)从发表的分子模拟数据的偏差低于现有型号(10〜20%)。基于该模型,我们比较(1)每种运输机制对不同半径不同的孔的孔的贡献,(2)在实验室和储层条件下测量的页岩渗透率,以及(3)纳米孔和天然骨折的渗透性。结果发现,当孔半径超过10nm和低于5nm时,气体传输由气体滑动和表面扩散为主。 Knudsen扩散仅在孔半径为2至25nm之间并且孔隙压力低于1000psi时变得显着。此外,实验室测量通常通常过度估计页岩渗透性。我们还提出了一种有前途的增强的气体回收方法,该方法是使用微尺寸的支撑剂打开和支撑闭合的自然骨折。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号