首页> 外文会议>SPE Improved Oil Recovery Conference >Optimizing CO2 and Field Gas Injection EOR in Unconventional Reservoirs Using the Fast Marching Method
【24h】

Optimizing CO2 and Field Gas Injection EOR in Unconventional Reservoirs Using the Fast Marching Method

机译:快速行进方法优化非传统水库中的二氧化碳和现场气体喷射EOR

获取原文

摘要

Recently there has been an increasing interest in Enhanced Oil Recovery (EOR) from shale oil reservoirs, including CO2 and field gas injection. For the performance assessment and optimization of CO2 and gas injection processes, compositional simulation is a powerful and versatile tool because of the capability to incorporate reservoir heterogeneity, complex fracture geometry, multi-phase and multi-component effects in nano-porous rocks. However, flow simulation accounting for such complex physics can be computationally expensive. In particular, field scale optimization studies requiring large number of high resolution compositional simulations can be challenging and sometimes computationally prohibitive. In this paper, we present a rapid and efficient approach for optimization of CO2 and gas injection EOR in unconventional reservoirs using the Fast Marching Method (FMM)-based flow simulation. The FMM-based simulation is analogous to streamline simulation and utilizes the concept of ‘Diffusive Time-of-Flight (DTOF)’. The DTOF is a representation of the travel time of pressure ‘front’ propagation and accounts for geological heterogeneity, well architecture and complex fracture geometry. The DTOF can be efficiently obtained by solving the ‘Eikonal equation’ using the FMM. The 3-D flow equation is then decoupled into equivalent 1-D equation using the DTOF as a spatial coordinate, leading to orders of magnitude faster computation for high-resolution and compositional models as compared to full 3-D simulations. The speed of computation enables the use of robust population-based optimization techniques such as genetic or evolutionary-based algorithm that typically require large number simulation runs to optimize the operational and process parameters. We demonstrated the efficiency and robustness of our proposed approach using synthetic and field scale examples. We first illustrate the validation of FMM-based simulation approach using an example of CO2 Huff-n-Puff for a synthetic dual-porosity and heterogeneous model with a multi-stage hydraulically fractured well. In the field-scale application, we present an optimization of operating strategies for gas injection EOR for a depleted shale oil reservoir in the Eagle Ford formation. The rapid computation of the FMM-based approach enabled intensive simulation study involving high-resolution geological models with million cells resulting in a comprehensive evaluation of the EOR project including sensitivity studies, parameter importance analysis and optimal operating strategies. This study shows the novelty and efficiency of the systematic optimization workflow incorporating the FMM-based compositional simulation for the field-scale modeling of CO2 and gas injection in shale oil reservoirs. Not only can it account for relevant physics such as reservoir heterogeneity, fracture geometry and fluid phase behavior but also lead to orders of magnitude saving in computational time over commercial finite difference simulators.
机译:最近出现了从页岩油气藏,包括二氧化碳和现场注气提高石油采收率(EOR)的兴趣日益增加。为CO 2的性能评估和优化和气体注入工序,组分模拟是因为能力纳入储层非均质性,复杂的裂缝几何形态,多相位和在纳米多孔岩石多组分效果的一个强大和灵活的工具。然而,流动模拟会计这样的复杂的物理可以是计算昂贵的。尤其是,需要大量高分辨率组成的模拟领域规模优化研究是具有挑战性的,有时计算望而却步。在本文中,我们提出了CO2的优化和气体注入EOR在非常规储层使用快速行进法(FMM)基流动模拟的快速和有效的方法。基于FMM模拟类似于流线模拟,并利用“扩散时间的飞行(DTOF)”的概念。所述DTOF是的压力“前”传播的传播时间的表示,占地质异质性,以及结构和复杂的裂缝几何形状。该DTOF可以通过求解“程函方程”使用FMM可以高效地获得。然后,将3-d流方程解耦成使用DTOF作为空间坐标当量的1- d方程,从而导致快几个数量级用于高分辨率和组成模型计算相比,完整的3-d的模拟。计算的速度使得能够使用稳健的基于人口的优化技术,如遗传性或进化为基础的算法,通常需要大量的模拟运行,以优化操作和工艺参数。我们展示了使用合成和田间尺度的例子我们提出的方法的效率和稳健性。我们首先说明基于FMM-模拟方法使用CO 2赫夫正帕夫的示例的用于合成的双重孔隙和异构模型的多级水力压裂井的验证。在该领域大规模应用中,我们提出操作用于气体注入EOR策略耗尽的页岩油积存在鹰福特形成的优化。基于FMM的方法的计算速度快启用密集模拟研究,涉及高分辨率地质模型,由此导致EOR项目包括敏感性分析,参数重要性分析及优化经营策略的综合评价万个细胞。这项研究显示了系统优化的新颖性和效率的工作流程整合为CO2的油田规模建模和注气页岩油藏基于FMM-组分模拟。它不仅可以解释相关的物理,如储层非均质性,裂缝的几何形状和流体的相行为也导致计算时间对商业有限差分模拟节约数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号