首页> 外文会议>ASME Turbomachinery Technical Conference and Exposition >TURBULENCE INPUT PARAMETERS CORRECTION METHODOLOGY IN WATER LUBRICATED THRUST BEARINGS
【24h】

TURBULENCE INPUT PARAMETERS CORRECTION METHODOLOGY IN WATER LUBRICATED THRUST BEARINGS

机译:湍流输入参数水润滑推力轴承中的校正方法

获取原文

摘要

Oil-lubricated bearings are widely used in high speed rotating machines such as those found in the aerospace and automotive industries. However, environmental issues and risk-averse operations are resulting in the removal of oil and the replacement of all sealed oil bearings with reliable water-lubricated bearings. Due to the different fluid properties between oil and water, the low viscosity of water increases Reynolds numbers drastically and therefore makes water-lubricated bearings prone to turbulence effects. This requires finer meshes when compared to oil-lubricated bearings as the low-viscosity fluid produces a very thin lubricant film. Analyzing water-lubricated bearings can also produce convergence and accuracy issues in traditional oil-based analysis codes. Thermal deformation largely affects oil-lubricated bearings, while having limited effects on water lubrication; mechanical deformation largely affects water lubrication, while its effects are typically lower than thermal deformation with oil. One common turbulence model used in these analysis tools is the eddy-viscosity model. Eddy-viscosity depends on the wall shear stress, therefore effective wall shear stress modeling is necessary in determining an appropriate turbulence model. Improving the accuracy and efficiency of modeling approaches for eddy-viscosity in turbulence models is of great importance. Therefore, the purpose of this study is to perform mesh refinement for water-lubricated bearings based on methodologies of eddy-viscosity modeling to improve their accuracy. According to Szeri [1], ε_m/v for the Boussinesq hypothesis is given by Reichardt's formula. Fitting the velocity profile with experiments having a y~+ in the range of 0 - 1,000 results in Ng-optimized Reichardt's constants k = 0.4 and δ~+ = 10.7. He clearly states that for y~+ > 1000 theoretical predictions and experiments have a greater variance. Armentrout and others [2] developed an equation for δ~+ as a function of the pivot Reynolds number, which they validated with CFD simulations. The definition of y~+ can be used to approximate the first layer thickness calculated for a uniform mesh. Together with Armentrout's equation, the number of required elements across the film thickness can be obtained.
机译:油润滑轴承广泛应用于高速旋转机器,如在航空航天和汽车工业中发现的高速旋转机器。然而,环境问题和风险厌恶作业导致拆除油和更换所有密封的油轴承,具有可靠的水润滑轴承。由于油和水之间的流体性质不同,水的低粘度急剧增加了雷诺数,因此使水润滑轴承容易出现湍流效应。与低粘度流体产生非常薄的润滑膜时,这需要更细的网格。分析水润滑轴承还可以在传统的油基分析法中产生收敛性和准确性问题。热变形在很大程度上影响油润滑轴承,同时对水润滑有有限的影响;机械变形在很大程度上影响水润滑,而其效果通常低于油的热变形。这些分析工具中使用的一种常见的湍流模型是涡粘度模型。涡流取决于壁剪切应力,因此在确定适当的湍流模型时需要有效的壁剪切应力建模。提高涡流模型中涡旋粘度建模方法的准确性和效率非常重要。因此,本研究的目的是基于涡粘度建模的方法来对水润滑轴承进行网眼细化,以提高其准确性。根据Szeri [1],Boussinesq假设的ε_m/ v由Reichardt的公式给出。用y〜+的实验拟合速度曲线,在0-1,000的范围内,Ng优化的Reichardt的常数k = 0.4和δ〜+ = 10.7。他显然指出,对于Y〜+> 1000个理论预测和实验具有更大的方差。 ArmentRout和其他[2]为Δ〜+作为枢轴雷诺数的函数开发了一个等式,它们用CFD仿真验证。 Y〜+的定义可用于近似为均匀网格计算的第一层厚度。与灭口方程一起,可以获得薄膜厚度上所需元件的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号