首页> 外文会议>International Symposium on Cavitation >Bubble dynamics and High Intensity Focused Ultrasound: experimental observations and numerical simulations using Boundary Element Method
【24h】

Bubble dynamics and High Intensity Focused Ultrasound: experimental observations and numerical simulations using Boundary Element Method

机译:泡沫动力学和高强度聚焦超声:使用边界元法的实验观察和数值模拟

获取原文

摘要

We present an experimental study of High Intensity Focused Ultrasound (HIFU) using a parabolic shaped transducer and high speed photography (Ohl et al, 2015). The transducer (Sonic Concept Inc.) has a diameter of 60 mm, and a resonant frequency of 250kHz. When it is driven between 120 to 150 Volt peak-to-peak, concentrated rings of bubbles are formed on top of the transducer. The distance between the rings is about 3 mm, which is half the wavelength of the sound wave produced by the transducer at 250 kHz. The bubbles within the rings are not stable. They move or jump between the rings, or coalesce, or float toward the free surface. To stabilise the rings, we use a reflector which is made of stainless steel, and have the same shape and dimensions as the transducer. At lower driving voltages (80 to 100 Vpp), streams of bubbles are seen moving towards the free surface. This indicates that no standing waves are present. When driven in a burst mode (500 cycles), small bubble clouds are formed. We captured the nucleation and expansion of these clouds using the high speed photography and a long distance microscopic lens. In an attempt to understand some of these observed phenomena, we employed numerical simulations based on the Boundary Element Method (BEM). The Boundary Element Method is an established numerical method for the simulation of bubble dynamics (Blake et al, 1986, 1987). Recently Klaseboer et al (2012) and Sun et al (2014) have improved the numerical solution methodology by eliminating the singularities in the Boundary Integral equation. By using an analytical function, and subtracting this from the original Boundary Integral Method in a specific manner, the method is desingularized, with the added advantage of eliminating the solid angle. This breakthrough significantly reduces the computational complexity and cost, making the use of higher order elements becomes straight forward. The same analytics is applied then to develop a three-dimensional BEM code to solve the Helmholtz equation. The code is used to simulate the ultrasound field generated by the HIFU transducer which is used in the experiments previously mentioned. From the simulation, the focused ultrasound field is clearly described.
机译:我们展示了使用抛物线形换能器和高速摄影(Ohl等,2015)的高强度聚焦超声(HIFU)的实验研究。换能器(Sonic Concept Inc.)的直径为60毫米,谐振频率为250kHz。当它在120至150伏的峰值到峰之间时,在换能器的顶部上形成浓缩的气泡环。环之间的距离约为3mm,这是由换能器在250kHz处产生的声波波长的一半。环内的气泡不稳定。它们在环之间移动或跳跃或跳跃,或朝向自由表面漂浮。为了稳定环,我们使用由不锈钢制成的反射器,具有与换能器相同的形状和尺寸。在较低的驱动电压(80至100Vpp)下,可以看到气泡流朝向自由表面移动。这表明没有存在驻波。当以突发模式(500个循环)驱动时,形成小气泡云。我们使用高速摄影和长距离显微镜镜头捕获了这些云的成核和扩展。试图了解这些观察到的一些现象,我们使用基于边界元方法(BEM)的数值模拟。边界元方法是用于模拟泡沫动力学的建立的数值方法(Blake等,1986,1987)。最近,Klaseboer等(2012)和Sun等人(2014)通过消除边界积分方程中的奇点改善了数值解方法。通过使用分析功能,并以特定方式从原始边界积分法减去这一点,该方法是假的,具有消除实线角的附加优点。这种突破显着降低了计算的复杂性和成本,使得使用更高阶元素变得直截了当。然后应用相同的分析来开发三维BEM码来解决Helmholtz方程。代码用于模拟由HIFU换能器产生的超声场,该换能器在先前提到的实验中使用。从模拟中,清楚地描述了聚焦超声字段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号