首页> 外文会议>Bioengineering and Translational Medicine Conference >Atomistic Simulations for Construction of an 'in Vitro-In Vivo-Ex Vivo-in Cyto-in silico' Performance-Correlation Profile within Biomedical Material Assemblies
【24h】

Atomistic Simulations for Construction of an 'in Vitro-In Vivo-Ex Vivo-in Cyto-in silico' Performance-Correlation Profile within Biomedical Material Assemblies

机译:用于在生物医学材料组件中构建“体外体内in Cyto-in Silico”性能相关性的原子仿真

获取原文

摘要

In silico static-lattice atomistic simulations(SLAS)and molecular mechanics energy relationships(MMER),in vacuum and solvent phase,have been employed by our research group to quantify and correlate the am vitro-in vivo-ex vivo a in cytoa performance of various drug delivery systems and tissue engineering scaffolds.The reactional profiles of multicomponent biomedical material assemblies,polymeric combinations,ionic and chemical crosslinkers,enzymatic degradation,mucopeptidic interactions,and stimuli-responsive systems were elucidated by exploring the spatial disposition of the molecular components.The presentation will focus on the applications of SLAS and MMER in our recently completed and published studies and will discuss: 1.nanoformation and solvation properties of the surfactant-emulsified polymeric nanosy stems;2.stabilizer-interaction displayed considerable stereospecificity,proper spacing and geometry of the coordination shell providing acrosslinking stabilizedastabilized emulsiona systems.3.amphiphilic polymerapeptide aggregation confirmed that passing of a polymerapeptide conjugate through the cell membrane requires a hydrophilicalipophilic-balance with lipophilicity on the higher side.4.incorporation of a physical crosslinker to a polymer complex lead to the accumulation of cohesion forces among the side-by-side polymer fragments chains,due to intermolecular crosslinking,inducing an axial stress;5.energy stabilization,low SVR,high density,lower polarizability and lower refractivity lead to highly efficient interactions within the poly electrolyte complexes;6.plasticizers and crosslinking closely effect the acohesive energy density(CED)a and hence the mechanical properties of polymeric fibers.The molar volume defines the elastic as well cohesive properties of a polymeric architecture;7.catalytic action of enzymes reduces molecular energy by a large quantity through relaxing close interatomic contacts;8.protein-polysaccharide and polymer-mucopeptide complexes;9.biological mucoglycopeptideapolymer dimerizations impacted the pK profile of drugs as they played a significant role in the retention of the polymeric implant for a longer time in the vaginal tissue with strong binding constants;10.electroactive molecules in electroresponsive hydrogels tend to drift close to the hydrogen-bonding sites sunken inside the polymer structure displaying a critical ajump diffusional behavioura.11.molecular interactions inherent to multicomponent matrix formation and the mucoadhesion mechanism.
机译:在Silico静态 - 晶格原子模拟(SLA)和分子力学能源关系(MMER),在真空和溶剂阶段,我们的研究组采用了含量在细胞型性能中的余量 - exvivo A量化和相关的通过探索分子组分的空间布置,阐明了各种药物递送系统和组织工程支架。演示将重点关注SLA和MMER在我们最近完成和公布的研究中的应用,并将讨论:1。表面活性剂 - 乳化聚合物纳米茎的Nanoformation和溶剂化性能; 2.Stabilizer - 相互作用显示了相当大的立体性,适当的间隔和几何形状提供横链稳定的协调壳体稳定的eyulsi ona system.3。鳄梨酰胺肽聚集体证实,通过细胞膜通过偶聚肽缀合物的通过在较高的侧面上具有亲脂性 - 嗜好性 - 物理交联剂对聚合物复合物的综合性导致粘性力的积累旁面聚合物片段链,由于分子间交联,诱导轴向应力; 5.生物稳定,低SVR,高密度,较低的极化性和较低的折射率导致聚电解质配合物内的高效相互作用; 6.PloStablaster和交联密切效果效果是受体纤维的受压能量密度(CED)A,因此摩尔体积与聚合物结构的浓度粘性特性定义弹性; 7.酶的催化作用通过大量降低分子能量。通过大量降低分子能量放松紧密的间隙触点; 8.蛋白 - 多糖和聚合物 - 粘膜肽复合物S; 9.生物粘膜肽酰胺释化释放硝化亚硝化合物二甲酯二胺对药物的PK剖面造成显着作用,因为它们在具有强烈的结合常数的阴道组织中延长了聚合物植入物的较长时间; 10.电翻水凝胶中的电气化分子倾向于漂移在聚合物结构内沉没的氢键位点,显示临界ajump扩散行为.11.多组分基质形成固有的分子相互作用和粘膜粘附机构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号