首页> 外文会议>International Conference on Quantum Technologies >Superfluidity of Identical Fermions in an Optical Lattice: Atoms and Polar Molecules
【24h】

Superfluidity of Identical Fermions in an Optical Lattice: Atoms and Polar Molecules

机译:光学晶格中相同的费米氏晶片的超芴:原子和极性分子

获取原文

摘要

In this work we discuss the emergence of p-wave superfluids of identical fermions in 2D lattices. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices, for short-range interacting atoms the scattering amplitude is strongly reduced compared to free space due to a small overlap of wavefunctions of fermions sitting in the neighboring lattice sites, which suppresses the p-wave superfluidity. However, we show that for a moderate lattice depth there is still a possibility to create atomic p-wave superfluids with sizable transition temperatures. The situation is drastically different for fermionic polar molecules. Being dressed with a microwave field, they acquire a dipole-dipole attractive tail in the interaction potential. Then, due to a long-range character of the dipole-dipole interaction, the effect of the suppression of the scattering amplitude in 2D lattices is absent. This leads to the emergence of a stable topological p_x + ip_y superfluid of identical microwave-dressed polar molecules.
机译:在这项工作中,我们讨论了2D格子中相同的离子晶片的P波超流的出现。光学晶格势势在FERMI表面上的状态的升高和FERMION-FERMION相互作用(散射)幅度的改变之间的相互作用中表现出相互作用。由于原子的有效质量增加,状态的密度增强。在深晶格中,对于短距离相互作用原子,与自由空间相比,由于坐在相邻的晶格位置的阴沉的波力的小重叠而与自由空间相比,散射幅度强烈地减小,这抑制了P波超浊度。然而,我们表明,对于温和的晶格深度,仍然可能产生具有可相同的过渡温度的原子P波超流。对于铁饼极性分子而言,情况急剧不同。穿着微波炉领域,他们在相互作用潜力中获取偶极偶极含有吸引力的尾巴。然后,由于偶极 - 偶极相互作用的远程特征,不存在抑制散射幅度的散射幅度的效果。这导致了相同微波穿着极性分子的稳定拓扑P_X + IP_y超流的出现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号