首页> 外文会议>International Engineering Research and Innovation Symposium >Unsteady aerodynamics of flapping flight - A fluid-structure interaction study of fore-hind wing phase difference
【24h】

Unsteady aerodynamics of flapping flight - A fluid-structure interaction study of fore-hind wing phase difference

机译:扑扑飞行的不稳定空气动力学 - 一种前后翼相位差的流体结构相互作用研究

获取原文

摘要

Flights of dragonflies, various insects and birds have been a subject of active research that may offer insight towards enhanced aerodynamic performance at low Reynolds numbers. To that end, we mimick the flapping biomechanics of a dragonfly by two thin flat airfoils plunging in tandem with each other. In the present study, we aim to investigate the effect of difference in flapping phase between fore and hind wings towards their aerodynamic performances. We computationally simulate incompressible, viscous, laminar flow around two thin flat airfoils that are purely plunging, at a Strouhal number of 0.25 and Reynolds number of 6500, using a flow solver in an Arbitrary Lagrangian-Eulerian framework. Kinematics of both fore and hind wing flapping followed a similar sinusoidal function but with relative phase angle difference to each other, that were varied between -50° to +50° including two cases were phase difference is 0° (i.e. in-phase fore-hind wing flapping) and +90° (i.e. fore wing lags hind wing by 90°). Numerical results indicate that maximum lift and drag forces for each fore and hind wings occur at phase angle of -40° and that power efficiency of tandem wings are better at phase angles when hind wing leads the fore wing, with maximum power efficiency occurring at a fore-hind wing phase difference of +30°. The complex fore-hind wing vortex interaction indicate likely benefit on the hind wing as it interacts with the fore wing at different phase angles.
机译:蜻蜓,各种昆虫和鸟类的航班一直是积极研究的主题,可能会对低雷诺数的增强空气动力学表现提供了解。为此,我们通过两个薄的平面翼型彼此垂直蓬松飘落的蜻蜓的拍打生物力学。在本研究中,我们的目标是探讨前后翅膀与空气动力学表现之间的拍打阶段差异的影响。我们在计算上模拟了不可压缩,粘性的层流,围绕两个薄的扁平翼型,在两个薄的扁平翼型中,在纯粹的0.25和雷诺数6500的reynolds数,在任意拉格朗日 - 欧拉骨架中使用流动求解器。前后翼片的运动学遵循类似的正弦功能,但彼此相对相角差,在-50°至+ 50°之间变化,包括两种情况是相位差为0°(即相位前 - 后翼拍打)和+ 90°(即前翼滞后后翼延伸90°)。数值结果表明,每个前翼的最大提升和阻力发生在-40°的相位角上,并且当后翼导致前翼时,串联翼的功率效率更好地处于相位角,最大功率效率发生在a前后翼相位差+ 30°。复杂的前后翼涡流相互作用表明在后翼上的可能受益,因为它在不同相角的前翼与前翼相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号