首页> 外文会议>ISRM European Rock Mechanics Symposium >Hydraulic Fracture Propagation under Varying In-Situ Stress Conditions of Reservoirs
【24h】

Hydraulic Fracture Propagation under Varying In-Situ Stress Conditions of Reservoirs

机译:水力裂缝扩展在水库不同的原位应力条件下

获取原文

摘要

In-situ stress state in deep reservoirs is highly variable due to many factors and it markedly influence the propagation behavior of hydraulic fractures. The direction and extent of hydraulic fracture propagation are predominantly controlled by the in-situ stress state of reservoirs. We conducted distinct element method-based numerical simulations to explore the behavior of hydraulic fracture propagation and containment under varying in-situ stress conditions and fluid injection rates. The results revealed that even a small contrast of minor principal stress between pay-zone and adjacent bounding zones can cause a significant hydraulic fracture containment. Simulations performed under different injection rates showed that the hydraulic fracture containment is also influenced by the injection rate and higher injection rates tend to increase the hydraulic fracture penetration into the adjacent bounding zones. Overall, the results of the present study generally suggest that the fracture propagation during hydraulic fracturing is not an unconstrained event as one would imagine and natural barriers such as varying in-situ stresses, which are common in deep reservoirs, often limit fracture propagation to a certain finite extent. In addition, operational conditions such as fluid injection rate can be selected appropriately to control the hydraulic fracture propagation into unproductive bounding strata.
机译:由于许多因素,深层储层中的原位应力状态具有高度变化,并且它显着影响液压骨折的传播行为。液压骨折传播的方向和程度主要由储层的原位应力状态控制。我们进行了不同的基于元素方法的数值模拟,以探讨各种原位应力条件和流体注射率下的液压断裂传播和遏制的行为。结果表明,即使支付区和相邻边界区之间的小主应力也甚至可能导致显着的液压骨折储能。在不同注射率下进行的模拟表明,液压骨折容纳也受注射速率的影响,并且较高的注射率倾向于将液压断裂渗透到相邻的边界区中。总体而言,本研究结果普遍认为,液压压裂期间的断裂传播不是一个不受约束的事件,因为可以想象和自然障碍,例如不同的原位应力,这在深层储层中常见,通常将骨折传播限制到a某些有限程度。另外,可以适当地选择诸如流体注入速率的操作条件,以控制液压断裂传播到非生产性边界层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号