首页> 外文会议>IEEE Radio Wireless Week >Towards efficient high power mm-wave and terahertz sources in silicon: One decade of progress
【24h】

Towards efficient high power mm-wave and terahertz sources in silicon: One decade of progress

机译:在硅中有效的高功率MM波和太赫兹来源:一十年的进步

获取原文
获取外文期刊封面目录资料

摘要

All promising applications of terahertz (THz) and millimeter-wave (mm-wave) systems, from imaging and spectroscopy to high data-rate communication, necessitate the design of high efficiency signal generators. In addition to the high propagation loss of the signals in these frequency ranges, the lack of activity of the current CMOS/SiGe devices (since the desired frequencies are close to their ?max or beyond it) emphasizes on the importance of coming up with new design methods in order to generate high output power signal sources. At UNIC group of Cornell university, we have a long history of designing mm-wave and terahertz signal generators. It started from designing oscillators close to the ?max with output power much higher than the state of the art oscillators in CMOS and SiGe technologies. It embarked on a 121 GHz fundamental oscillator with ?3.5 dBm output power in a 130 nm CMOS process. To generate higher frequencies, harmonic generators and frequency multipliers have led to oscillators with oscillation frequencies beyond the ?max. For instance, a triple-push oscillator is fabricated in 65 nm CMOS process with ?7.9 dBm output power at 480 GHz. In the next phase, to cope with the challenges of using varactors for frequency tuning, a novel injection-locked loop of oscillators is designed using these advanced oscillators as the core, which shows a 4.5% of tuning range at 290 GHz and has increased the output power to ?2.1 dBm by combining the power of the fourth harmonic of four push-push oscillators. In another attempt, the injection-locked tuning loop is built upon eight voltage controlled oscillators (VCO's). Combining the output power of the second harmonic of the eight core VCO's leads to a maximum output power of 4.1 dBm at 256 GHz and the resulting VCO has a tuning range of 4.3% by employing two varactors, one inside the oscillator block and the other one in the phase shifter. At this point, the maximum DC-to-RF efficiency of all these oscillators were below 1.1% which compels the next challenging step to improve the DC-to-RF efficiency to a reasonable value. In this vital step, using a completely novel idea of shaping and maximizing the unilateral power gain of a two-port network (the measure of its activity), a fundamental oscillator is designed in a 130 nm SiGe process which has improved the DC-to-RF efficiency by a factor of 10 and has increased the output power to more than 4.8 dBm, utilizing only one transistor. This new approach enables the future THz and mm-wave systems to become both efficient and also capable of producing high output power. High tunability and frequencies higher than the ?max in addition to much higher output power can be attained by employing previous steps of combining the output powers and tuning through injection-locked loop of oscillators.
机译:所有有希望的Terahertz(THz)和毫米波(MM波)系统从成像和光谱到高数据速率通信所需的应用,需要设计高效信号发生器。除了这些频率范围内的信号的高传播损失之外,目前CMOS / SIGE器件的缺乏活动(由于所需频率接近它们的Δmax或超出它)强调提出新的重要性设计方法以产生高输出功率信号源。在联合国康奈尔大学,我们拥有历史悠久的设计MM波和太赫兹信号发生器。它开始设计振荡器,靠近的振荡器,输出功率远高于CMOS和SiGe技术的艺术振荡器的状态。它以121 GHz基本振荡器在130nm CMOS过程中进行了一台121 GHz基础振荡器。为了产生更高的频率,谐波发生器和频率倍增器导致振荡器,振荡频率超出振荡频率,超出振荡频率。例如,三次推送振荡器在65nm CMOS工艺中制造了480 GHz的7.9 dBm输出功率。在下一阶段,为了应对使用变容器进行频率调谐的挑战,使用这些先进的振荡器作为核心设计了一种新的注射锁定环路,其显示在290 GHz的调谐范围的4.5%并增加通过组合四个推动振荡器的第四次谐波的功率来输出电源到2.1 dBm。在另一种尝试中,注射锁定的调谐环路基于八个电压控制振荡器(VCO)。结合八个核心VCO的第二次谐波的输出功率在256GHz的最大输出功率为4.1 dBm,由此通过采用两个变容座,一个在振荡器块内部的调谐范围为4.3%在相移器中。此时,所有这些振荡器的最大DC-RF效率低于1.1%,这强制了将DC到RF效率提高到合理值的下一个具有挑战性的步骤。在这个重要的步骤中,使用完全新颖的成型和最大化双端口网络的单侧功率增益(其活动的量度),基本振荡器设计在130nm SiGe过程中,该过程改善了DC-to -RF效率为10倍,并将输出功率提高到4.8 dBm以上,仅利用一个晶体管。这种新方法使未来的THz和MM波系统能够变得有效,也能够产生高输出功率。通过采用先前的步骤,可以实现高于更高的输出功率之外的高功率和频率,并且可以通过将输出功率组合并通过注射锁定环路的振荡器进行调整。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号