首页> 外文会议>international renewable energy storage conference >Investigation on the impact of size and form variation of sorption material pellets on heat storage efficiency in an adsorption thermal energy storage system
【24h】

Investigation on the impact of size and form variation of sorption material pellets on heat storage efficiency in an adsorption thermal energy storage system

机译:吸附材料颗粒尺寸和形成变化对吸附热能储存系统蓄热效率的影响

获取原文

摘要

Growing global energy demand and rising concerns about environmental problems have increased the worldwide attention to thermal energy storage (TES), trying to improve the currently inefficient utilization of energy (especially primary energy sources e.g. fossil or renewable). A major part of the energy consumption could be considered as low temperature thermal energy (below 200°C). Thus, a better management of this energy by thermal energy storage could provide a significant contribution to improve the overall efficiency in industrial economies. Thermal energy can be stored by means of different methods (e.g. sensible heat, latent heat or thermo-chemical storage). Compared to sensible heat and latent heat, thermo-chemical heat storage has in general a higher heat storage density (up to 10 times more that sensible heat storage) and lower heat losses, especially for long storage period. The principle of the adsorption storage system is based on a gaseous working fluid (e.g. water) which gets adsorbed by a highly porous material (e.g. zeolite). This adsorption process is an exothermal one, thus the released heat, can be extracted and used. In order to recharge the heat storage system, desorption of the working fluid is done by heating the porous material. The whole process occurs under vacuum pressure. In this investigation, a thermo-chemical method was used with a reversible adsorption/desorption process in order to improve the operation conditions for different shapes of Zeolite pellets. Hence to achieve this aim, an experimental sorption unit has been set to measure the invested and stored heat in the adsorbent packed bed. The experimental results show that both shape and size of the pellets have an influence on the heat efficiency and capacity, where a maximum specific heat storage capacity of 120 Wh/kg was achieved.
机译:越来越多的全球能源需求和对环境问题的担忧已经增加了全世界对热能储存(TES)的关注,试图改善当前低效的能量(特别是主要能源例如化石或可再生)。能量消耗的主要部分可被认为是低温热能(低于200℃)。因此,通过热能存储更好地管理这种能量可以提供显着的贡献,以提高工业经济体的整体效率。通过不同的方法可以储存热能(例如,可显着的热,潜热或热化学储存)。与明智的热量和潜热相比,热化学储热量一般具有较高的储热密度(最多10倍,可显着的储热)和较低的热损失,特别是对于长储存周期。吸附储存系统的原理基于气态工作流体(例如水),其被高度多孔材料(例如沸石)吸附。该吸附过程是放热的过程,从而可以提取和使用释放的热量。为了给蓄热系统充电,通过加热多孔材料来完成工作流体的解吸。整个过程在真空压力下发生。在该研究中,使用热化学方法与可逆吸附/解吸过程一起使用,以改善不同形状的沸石粒料的操作条件。因此,为了实现这种目标,已经设定了实验吸附单元以测量吸附剂填充床中的投资和储存的热量。实验结果表明,颗粒的两种形状和尺寸对热效率和容量的影响有影响,其中实现了120WH / kg的最大特定储热容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号