首页> 外文会议>International Conference on Deep and High Stress Minin >Deep sublevel cave mining and surface influence
【24h】

Deep sublevel cave mining and surface influence

机译:深雪橇洞穴挖掘和表面影响

获取原文

摘要

With increasing mining depths and excavation volumes comes not only increased rock stresses and more difficult underground mining conditions, but also increased surface effects, in particular from cave mining. The surface effects of deep sublevel cave mining are not well understood and are further explored in this paper, through a case study of the LKAB Kiirunavaara Mine. Two different numerical modelling approaches were used to quantify potential surface effects. The first approach was applied to Sjomalmen (Lake Orebody). This is a non-daylighting portion in the northern end of the mineralisation, above which surface cratering has developed. Three-dimensional (3D) numerical modelling, using the Itasca caving algorithm, was applied to study future mining of Sjomalmen down to Level 1365 m. In the second approach, 2D modelling of the main portion of the Kiirunavaara orebody was conducted, using a caving simulation scheme initially developed at the Lulea University of Technology. This model enabled simulating caving to large depths, in this particular case down to Level 1800 m, for prediction on hangingwall deformations. The actual caving is simulated implicitly in these continuum models. Observational data on cave development and surface cratering, as well as measured ground surface deformations, were used to calibrate the numerical models. For both approaches, deeper mining was shown to significantly affect the ground surface. Ground deformations are not arrested by bulking and/or increased confinement as mining goes deeper. Both modelling approaches have distinct pros and cons. The 2D approach is only applicable to the main portion of the orebody, where 2D geometrical conditions can be reasonably assumed, but calculation times are faster compared to the 3D approach. The models were fairly sensitive to the geomechanical properties and choice of constitutive model. This facilitated calibration, but also implies that an improved characterisation of the rock mass in the cap rock and hangingwall is important for increased reliability in predictive analyses.
机译:随着采矿深度的增加,挖掘量不仅增加了岩石应力和更困难的地下采矿条件,而且还增加了表面影响,特别是洞穴挖掘。深度浮游洞穴挖掘的表面效应尚未得到很好的理解,并通过对Lkab Kiirunavaara矿的案例研究进一步探索了本文。两种不同的数值建模方法用于量化潜在的表面效应。第一种方法适用于Sjomalmen(奥尔贝尔湖)。这是矿化北端的非日光部分,高于该矿化的矿化部分已经开发出来。使用Itasca崩落算法的三维(3D)数值模型应用于研究未来Sjomalmen的未来挖掘到1365米。在第二种方法中,使用最初在Lulea技术大学的脉冲模拟方案进行Kiirunavaara矿体的主要部分的2D模型。该模型使得在悬垂壁变形上的预测下,该模型使得在这种特殊情况下,在该特定情况下达到1800米。在这些连续型模型中隐含地模拟实际塌陷。用于洞穴开发和表面撞击器的观测数据以及测得的地面变形,用于校准数值模型。对于这两种方法,显示出深层挖掘显着影响地面。由于采矿进入更深,因此不会通过膨胀和/或增加的限制而被逮捕。两个建模方法都有不同的利弊。 2D方法仅适用于矿体的主要部分,其中可以合理地假设2D几何条件,但与3D方法相比,计算时间更快。该模型对地质力学性质和本构模型的选择相当敏感。这种促进的校准,还意味着提高了帽岩石和悬挂壁中的岩石质量的表征对于提高预测分析的可靠性是重要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号