首页> 外文会议>International Conference on Fluid Mechanics and Fluid Power >Numerical Analysis of Flow Separation in Rocket Nozzles
【24h】

Numerical Analysis of Flow Separation in Rocket Nozzles

机译:火箭喷嘴流动分离的数值分析

获取原文

摘要

The focus of present study is to have a comprehensible understanding of flow physics involved in separation in rocket nozzle. Numerical analysis of flow separation in rocket nozzles is challenging and involved task because of the complex turbulent flow behaviour that develops different shock-patterns. The study will have to consider shock-boundary layer interaction with shear layers and formation of vortices that includes the generation of flow features like the Mach disk, separation shock, Mach stem, vortex core, contact surface, slip stream and shock front. When the back pressure is high enough, the boundary layer separates and moves freely away from the nozzle wall. A recirculation zone of ambient air is created at the nozzle exit which will not allow the flow reattachment. This is a basic separation pattern, commonly known as Free Shock Separation (FSS) that can be observed in all kinds of nozzles; especially, conical, contoured or Truncated Ideal Contoured (TIC) nozzles. The flow separation pattern is considerably different in strongly overexpanded nozzles with an internal shock, like Thrust Optimized Contoured nozzles (TOC) or Thrust Optimized Parabolic bell nozzles (TOP). The flow is getting reattached to the nozzle wall creating a restricted circulation region forming a closed separation bubble and is named as Restricted Shock Separation (RSS). The paper presents numerical simulations carried out with different nozzle geometries and chamber-to-ambient pressure ratios with comprehensive assessment of the flow features and flow separation structures. Separation of supersonic flow in convergent-divergent nozzles is investigated by solving the Reynolds-averaged Navier-Stokes equations with a two-equation k-ω turbulence model.
机译:目前研究的重点是对在火箭喷嘴中分离的流动物理学中具有可理解的理解。火箭喷嘴中流动分离的数值分析是具有挑战性的,涉及任务,因为产生不同的冲击模式的复杂湍流行为。该研究将不得不考虑与剪切层的冲击边界层相互作用,以及形成涡流的涡流,包括Mach盘,分离冲击,马赫阀杆,涡旋芯,接触面,滑动流和震动前沿等流动功能。当背压足够高时,边界层分离并自由地远离喷嘴壁移动。在喷嘴出口处产生环境空气的再循环区,这不会允许流动重新连接。这是一种基本的分离图案,通常称为可在各种喷嘴中观察到的自由休克分离(FSS);特别是,锥形,轮廓或截断理想的鳞状(TIC)喷嘴。流动分离图案在具有内部冲击的强过度过度的喷嘴中具有显着不同,如推力优化的轮廓喷嘴(TOC)或推力优化抛物线钟状喷嘴(顶部)。流动被重新连接到喷嘴壁,产生形成闭合分离气泡的限制循环区域,并被命名为受限制的冲击分离(RSS)。本文介绍了用不同喷嘴几何形状和室内环境压力比进行的数值模拟,随着流动特征和流量分离结构的综合评估。通过用双等式K-ω湍流模型求解雷诺平均Navier-Stokes方程,研究了会聚 - 发散喷嘴中的超音速分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号