首页> 外文会议>International Conference on Mechanical Engineering and Automation Science >Structure Topology Optimization of Brake Pad in Large-megawatt Wind Turbine Brake Considering Thermal-structural Coupling
【24h】

Structure Topology Optimization of Brake Pad in Large-megawatt Wind Turbine Brake Considering Thermal-structural Coupling

机译:考虑热结构耦合的大型风力涡轮机制动器中制动垫结构拓扑优化

获取原文

摘要

There always exists severe non-uniform wear of brake pad in large-megawatt wind turbine brake during the braking process, which has the brake pad worn out in advance and even threats the safety production of wind turbine. The root cause of this phenomenon is the non-uniform deformation caused by thermal-structural coupling effect between brake pad and disc while braking under the conditions of both high speed and heavy load. For this problem, mathematical model of thermal-structural coupling analysis is built. Based on the topology optimization method of Solid Isotropic Microstructures with Penalization, SIMP, structure topology optimization of brake pad is developed considering the deformation caused by thermal-structural coupling effect. The objective function is the minimum flexibility, and the structure topology optimization model of brake pad is established after indirect thermal-structural coupling analysis. Compared with the optimization result considering non-thermal-structural coupling, the conspicuous influence of thermal effect on brake pad wear and deformation is proven as well as the rationality of taking thermal-structural coupling effect as optimization condition. Reconstructed model is built according to the result, meanwhile analysis for verification is carried out with the same working condition. This study provides theoretical foundation for the design of high-speed and heavy-load brake pad. The new structure may provide design reference for improving the stress condition between brake pad and disc, enhancing the use ratio of friction material and increasing the working performance of large-megawatt wind turbine brake.
机译:在制动过程中,在制动过程中总共存在严重的刹车片磨损垫,其具有提前磨损的制动垫,甚至威胁到风力涡轮机的安全生产。这种现象的根本原因是由制动垫和盘之间的热结构耦合效应引起的不均匀变形,同时在高速和重载的条件下制动。为此问题,建立了热结构耦合分析的数学模型。基于常态各向同性微观结构的拓扑优化方法,达到惩罚,SIMP,考虑到热结构耦合效果引起的变形,开发了制动垫的结构拓扑优化。目标函数是在间接热结构耦合分析之后建立制动垫结构拓扑优化模型的最小灵活性。与考虑非热结构耦合的优化结果相比,经过验证的热效应对制动垫磨损和变形的显着影响,以及作为优化条件的热结构耦合效应的合理性。重建模型是根据结果建立的,同时通过相同的工作条件进行验证的分析。本研究为高速和重载刹车片设计提供了理论基础。新结构可以提供用于改善制动垫和盘之间的应力条件的设计参考,提高摩擦材料的使用比率以及提高大型风力涡轮机制动器的工作性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号