【24h】

The Wiener Index of the Composition of Two Planar Graphs

机译:两个平面图组成的维纳指数

获取原文

摘要

The Wiener index, is the first, and also one of the most important topological indices of chemical graphs. Furthermore, there are many situations in communication, facility location, cryptology, architecture etc, where the Wiener index of the corresponding graph or the average distance is of great interest. One of the problems, for example, is to find a spanning tree with minimum average distance. In this paper we present the notion of the composition of two planar graphs, through some examples and, we will focus to calculate the Wiener index for the composition of two cycle planar graphs W(Cn1 °Cn2 ) and the Wiener index for the composition of cycle planar graph and path planar graph W(Cn1°Pn2 ), using oar's theorem.
机译:维纳指数是第一个,也是化学图的最重要的拓扑指标之一。 此外,通信,设施位置,密码学,建筑等许多情况,其中相应图的维纳索引或平均距离非常兴趣。 例如,其中一个问题是找到具有最小平均距离的生成树。 在本文中,我们通过一些示例介绍了两个平面图的组成的概念,我们将重点关注两个循环平面图W(CN1° CN2)和维纳指数的组成的维纳指数 循环平面图和路径平面图W(CN1° PN2)的组成,使用OAR定理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号