首页> 外文会议>Conference on sensing and analysis technologies for biomedical and cognitive applications >Radon Transform Imaging: Low-Cost Video Compressive Imaging at Extreme Resolutions
【24h】

Radon Transform Imaging: Low-Cost Video Compressive Imaging at Extreme Resolutions

机译:氡变形成像:极端分辨率的低成本视频压缩成像

获取原文

摘要

Most compressive imaging architectures rely on programmable light-modulators to obtain coded linear measurements of a signal. As a consequence, the properties of the light modulator place fundamental limits on the cost, performance, practicality, and capabilities of the compressive camera. For example, the spatial resolution of the single pixel camera is limited to that of its light modulator, which is seldom greater than 4 megapixels. In this paper, we describe a novel approach to compressive imaging that avoids the use of spatial light modulator. In its place, we use novel cylindrical optics and a rotation gantry to directly sample the Radon transform of the image focused on the sensor plane. We show that the reconstruction problem is identical to sparse tomographic recovery and we can leverage the vast literature in compressive magnetic resonance imaging (MRI) to good effect. The proposed design has many important advantages over existing compressive cameras. First, we can achieve a resolution of N x N pixels using a sensor with N photodetectors; hence, with commercially available SWIR line-detectors with 10k pixels, we can potentially achieve spatial resolutions of 100 megapixels, a capability that is unprecedented. Second, our design is scalable more gracefully across wavebands of light since we only require sensors and optics that are optimized for the wavelengths of interest; in contrast, spatial light modulators like DMDs require expensive coatings to be effective in non-visible wavebands. Third, we can exploit properties of line-detectors including electronic shutters and pixels with large aspect ratios to optimize light throughput. On the flip side, a drawback of our approach is the need for moving components in the imaging architecture.
机译:大多数压缩成像架构依赖于可编程光调制器来获得信号的编码线性测量。因此,光调制器的性质将基本限制对压缩相机的成本,性能,实用性和能力进行基本限制。例如,单像素摄像机的空间分辨率仅限于其光调制器的空间分辨率,其很少大于400papixels。在本文中,我们描述了一种新的压缩成像方法,避免了空间光调制器的使用。在其位置,我们使用新颖的圆柱形光学和旋转龙门,直接对传感器平面上的图像的氡变换进行直接样本。我们表明,重建问题与稀疏断层恢复相同,我们可以利用压缩磁共振成像(MRI)的广大文献效果。所提出的设计与现有的压缩摄像机相比具有许多重要的优势。首先,我们可以使用带有N光电探测器的传感器来实现N X N像素的分辨率;因此,对于具有10k像素的市售SWIR线路检测器,我们可以实现100百万像素的空间分辨率,这是前所未有的能力。其次,我们的设计在光线带上更优雅地缩放,因为我们只需要针对感兴趣波长优化的传感器和光学器件;相比之下,像DMD这样的空间光调制器需要昂贵的涂层在非可见波带中有效。第三,我们可以利用线路检测器的属性,包括电子百叶窗和具有大型纵横比的像素,以优化光吞吐量。在翻盖方面,我们方法的缺点是需要在成像架构中移动组件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号