首页> 外文会议>SPE Trinidad and Tobago Section Energy Resources Conference >A Way to Improve Water Alternating Gas Performance in Tight Oil Reservoirs
【24h】

A Way to Improve Water Alternating Gas Performance in Tight Oil Reservoirs

机译:一种提高封装水箱水交替气体性能的方法

获取原文

摘要

Primary recovery remains as low as 5-10 % of original oil in place (OOIP) in tight oil reservoirs, even with horizontal wells and massively hydraulical fracturing applied. Water flood helps to maintain the pressure and CO2 contributes to oil swelling, viscosity reduction and wettability alteration; in addition, CO2 and water have a chance to improve oil recovery. Furthermore, a water alternating gas (WAG) process gives a higher oil recovery compared to continuous water or gas injection. The WAG performance can be improved by mobility control, wettability alteration and interfaical tension management. Chemical additives like polymer or foam can help to improve mobility, but they are limited to large porous media. The common pore diameter is approximately 30 nm to 2,000 nm in tight sandstone reservoirs and 2nm to 50nm in shale reservoirs. Alkaline can cause a reduction in interfacial tension. However, a candidate for alkaline flood should have an acid number above 0.5 mg OH’ /g oil, corresponding to oil with API below 30. The surfactant particles with a diameter of around lOnm to 30nm can reduce interfacial tension while nanoparticles with a diameter of 1nm to 7 nm can affect disjoining pressure at interface and alter wettability; both of them can be candidate additives in improving WAG performance. Moreover, low salinity water exchanges ions in a reservoir, resulting in water film instability and wettability alteration. It can be an alternative solution in improving WAG performance. In this paper, an analytical model of the WAG process is studied. Afterwards, numerical reservoir simulations are made for surfactant, low salinity water and nanofluid additives in improving WAG performance.
机译:初级恢复仍然低至5-10%的原油在紧密储油器中(OoIP),即使水平井和大量液压压裂施加。水洪有助于维持压力,二氧化碳有助于油膨胀,粘度降低和润湿性改变;此外,二氧化碳和水有机会改善采油。此外,与连续水或气体注射相比,交替气体(摇摆)工艺提供更高的储油。移动性控制可以提高摇摆性能,润湿性改变和杂交张力管理。化学添加剂如聚合物或泡沫可以有助于改善迁移率,但它们仅限于大孔介质。在紧密的砂岩储层和页岩储存器中,常见的孔径约为30nm至2,000nm至2nm至50nm。碱性可导致界面张力降低。然而,碱性洪水的候选物应具有高于0.5mg OH' / G油的酸值,对应于30以下的油脂。直径为LONM至30nm的表面活性剂颗粒可以降低界面张力,而具有直径的纳米颗粒1nm至7 nm可以影响接口和改变润湿性的抗衡压力;它们中的两者都可以是提高摇摆性能的候选药物。此外,低盐水水交换储层中的离子,导致水膜不稳定性和润湿性改变。它可以是提高摇摆性能的替代解决方案。本文研究了WAG过程的分析模型。然后,在提高摇摆性能方面,对表面活性剂,低盐度水和纳米流体添加剂进行了数值储层模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号