首页> 外文会议>SPE Unconventional Resources Technology Conference >Enhanced Recovery in Shales: Molecular Investigation of CO2 Energized Fluid for Re-Fracturing Shale Formations
【24h】

Enhanced Recovery in Shales: Molecular Investigation of CO2 Energized Fluid for Re-Fracturing Shale Formations

机译:增强的Shales恢复:CO2通电流体用于重新压裂页岩的分子研究

获取原文

摘要

The liquid and gas rich shales are low permeability, low porosity but high organic content reservoirs. They need effective sub-surface, in-situ stimulation for economic production. Sometimes due to ineffective initial completion, the shale wells don't produce well. An effective re-stimulation or refracturing can shoot up the production from these mature low producing wells. The fracture fluid plays a key role in determining the fate of such reservoirs. Typically, slickwater or gelled water is used as a fracture-fluid. However, the energized fluids, energized with carbon dioxide (CO2) has shown to increase the performance. They reduce the water volumes, problems associated with water usage and have superior proppant transport capabilities. The Molecular Dynamics (MD) Simulations technique is used in the current work to understand the interaction between carbon dioxide and hydrocarbons rich Type II kerogen in the shale rocks. The Nose-Hoover style non-Hamiltonian equations of motion are used in a molecular simulator to generate positions and velocities of carbon dioxide and kerogen molecules sampled from the canonical (nvt) and isothermal-isobaric (npt) ensembles. In this work, we propose that carbon dioxide energized fluids be used for re-fracturing the low producing shale formations. In shale fractured with carbon dioxide enhanced fracture fluid, some of the CO2 is retained in the formation and doesn't flow back after the fracturing operation. The current work study the fate of the retained portion of CO2 in an energized fracturing operation. MD simulations reveal that carbon dioxide has more affinity than methane and heavier hydrocarbons like octane, to be retained in the organic part known as kerogen (Pathak M., 2015a) found in shales. MD simulations also reveal that the kerogen shrinks as a results of absorption of CO2 which leads to effective decrease in the skin of the formation. This helps in better fluid flow between the formation and fractures. The carbon dioxide dissolved in the kerogen helps to displace hydrocarbons absorbed in the kerogen. The diffusion coefficient of carbon dioxide in kerogen is found to be of an order of magnitude less than methane or octane. MD simulations technique has been used for the first time to explore the interaction between carbon dioxide and organic matter in shales at the molecular scale. The mechanism of the carbon dioxide energized fracture-fluid induced enhanced recovery is understood to understand the key processes that helps in taking decisions of a re-fracture job.
机译:富含液体和气体的磁性和气体是低渗透性,低孔隙度但高有机含量储存器。他们需要有效的子表面,原位刺激进行经济生产。有时由于初始完成无效,页岩井不会产生良好。有效的重新刺激或抑制可以从这些成熟的低产生孔中射出生产。裂缝液在确定这种储层的命运方面发挥着关键作用。通常,使用光滑或凝胶水作为骨折流体。然而,用二氧化碳(CO2)通电的通电流体已显示出现性能。它们减少了水量,与水有关的问题并具有优异的支撑剂运输能力。分子动力学(MD)模拟技术用于目前的工作,以了解页岩岩石中二氧化碳和烃类富含II型Kerogen之间的相互作用。鼻子胡佛式非汉离子的运动方程用于分子模拟器中,以产生从规范(NVT)和等温患者(NPT)合奏中取样的二氧化碳和基因分子的位置和速度。在这项工作中,我们提出了二氧化碳通电流体用于重新破坏低产生的页岩形成。在具有二氧化碳增强的断裂液的页岩中,一些二氧化碳保留在地层中,并且在压裂操作之后不会回流。目前的工作在激励压裂操作中研究了CO2的保留部分的命运。 MD模拟显示,二氧化碳比甲烷和较重的碳氢化合物具有更多的亲和力,如辛烷值,保留在Shales中发现的Kerogen(Pathak M.,2015A)的有机部分中。 MD模拟还揭示了Kerogen缩小了CO2的吸收结果,这导致形成的皮肤有效降低。这有助于在地层和裂缝之间更好地流动流动。溶解在角蛋白中的二氧化碳有助于将烃移位在基因中吸收的碳氢化合物。发现基因中二氧化碳的扩散系数为小于甲烷或辛烷值的数量级。 MD模拟技术首次使用,探讨分子尺度的二氧化碳与有机物质之间的相互作用。二氧化碳通电骨折流体诱导增强恢复的机制应理解,了解有助于考虑重新骨折工作的关键过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号