首页> 外文会议>Abu Dhabi International Petroleum Exhibition Conference >Prediction of Fluid Flow in Porous Media using Physics Informed NeuralNetworks
【24h】

Prediction of Fluid Flow in Porous Media using Physics Informed NeuralNetworks

机译:使用物理信息信息通知神经网络预测多孔介质中的流体流动

获取原文

摘要

In the realm of reservoir engineering,we are categorized to be in the small data regime because of thecomplex physical systems we are dealing with as well as the inherent uncertainty in our problems.Theobjective of this paper is to present a physics informed neural network(PINN)technique that is able to useinformation from the fluid flow physics as well as observed data to model the Buckley-Leverett problem.We use the classical problem of drainage of gas into a water-filled porous medium to test ourimplementation.The analytical solutions obtained using the method of characteristics are comparedwith solutions obtained using the DeepXDE library that is built on top of TensorFlow.The automatic-differentiation capability of TensorFlow allows us to interweave the underlying physics of the problemwith any observed data to come up with a data-efficient universal function approximator.The flexibilityof TensorFlow also allows us to set multiphase parameters to be trainable or not,which would ultimatelyassist in any inverse modeling efforts using the problem.Several cases are presented that highlight the importance of the coupling between observed data andphysics-informed neural networks for different parameter space.The cases demonstrate the capability ofPINNs to augment data-driven solutions.Our results indicate that PINNs are capable of capturing the overalltrend of the solution even without observed data but the resolution and accuracy of the solution are improvedtremendously once the augmentation of data and physics is implemented.Even with a large mobility ratio,the predicted solution of the PINNs seems promising.The results in our paper indicate that such methods canbe utilized to train models that could be used estimate a well-informed initial guess in a reservoir simulatorbecause they capture the overall behavior but miss the intricate details that could be circumvented withconventional reservoir simulation.The work presented in the paper demonstrates the importance and the capability of applying machinelearning approaches in reservoir engineering problems.Additionally,it gives a forward-looking approachfor the future of reservoir simulation techniques that could augment data with the physics.
机译:在水库工程领域中,我们被分类为在小数据制度中,因为我们正在处理的表明物理系统以及我们问题的固有的不确定性。本文的目的是提供一个物理信息的神经网络(Pinn )能够从流体流物理学和观察到的数据使用流体流动物理学的技术,以模拟Buckley-Leverett问题。我们使用气体排出的经典问题进入水填充的多孔介质以测试OutimoMentation。使用的分析解决方案将特性的方法与使用基于Tensorflow之上的Deepxde库获得的溶液进行了比较。TensorFlow的自动分化能力使我们能够对任何观察到的数据进行界面的底层物理,以便通过数据高效的通用功能来进行任何观察到的数据近似值。TensoRFlow的灵活性还允许我们设置要培训的多相参数,它会是UL使用问题的任何反向建模工作中的时间表。提出了案例,突出了对不同参数空间的观察到数据和物理知识的神经网络之间的耦合的重要性。该病例展示了增加数据驱动解决方案的能力。我们的结果表明该PINN能够捕获解决方案的总结即使没有观察到的数据,但是解决了解决方案的分辨率和准确性,一旦实现了数据和物理学的增强,均匀的移动率,拼接的预测解决方案似乎很有前途。我们论文中的结果表明,这些方法可以利用培训可以使用的模型来估计在水库模拟程序中估计的信息良好的初步猜测,因为它们捕获了整体行为,但错过了可能被避难的内容储层模拟的复杂细节。工作本文介绍了重要性以及在水库工程问题中申请机械学习方法的能力。加法,它给出了可以将数据增强与物理数据的水库模拟技术的前瞻性接近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号